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Abstract. We present a novel 3-D recovery method based on structured
light. This method unifies depth from focus (DFF) and depth from defocus
(DFD) techniques with the use of a dynamic (de)focused projection. With
this approach, the image acquisition system is specifically constructed to
keep a whole object sharp in all the captured images. Therefore, only the
projected patterns experience different defocused deformations accord-
ing to the object’s depths. When the projected patterns are out of focus,
their point-spread function (PSF) is assumed to follow a Gaussian dis-
tribution. The final depth is computed by the analysis of the relationship
between the sets of PSFs obtained from different blurs and the variation
of the object’s depths. Our new depth estimation can be employed as a
stand-alone strategy. It has no problem with occlusion and correspon-
dence issues. Moreover, it handles textureless and partially reflective
surfaces. The experimental results on real objects demonstrate the ef-
fective performance of our approach, providing reliable depth estimation
and competitive time consumption. It uses fewer input images than DFF,
and unlike DFD, it ensures that the PSF is locally unique. © 2011 Society of
Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3644541]

Subject terms: focus; depth from defocus; active illumination pattern; range sen-
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1 Introduction

In the extensive field of computer vision, depth recovery ap-
proaches have been broadly developed and have attracted
substantial attention over recent decades. It is a challenging
problem to recover the 3-D information (i.e., depth) that is
lost during the projection of a 3-D scene onto a 2-D image
plane. Several 3-D reconstruction algorithms have already
been proposed; the effectiveness of each method, both qual-
itative and quantitative, has been studied. However, there is
still no unique satisfactory solution that applies to all kind of
scenes. Moreover, our new approach, which entails a com-
bination of depth from focus (DFF) and depth from defocus
(DFD) with the use of a light-pattern projection, has not yet
been explored. Here, we develop a prototype of a range sen-
sor from our new depth-estimation system. Various relevant
applications can be found in the real world, starting from
large-scale examples, such as feature extraction in video
surveillance, to small-scale examples, such as in microbi-
ological analysis.

Depth recovery approaches are generally classified into
three categories. The first category consists of time-delay—
based approaches, where a transreceiver system computes
the delay or any deterioration in the reflected signal after
the signal is sent and returns back from the object surfaces.
Radar/sonar and laser coherence are examples of this ap-
proach. Such methods provide useful rough depth maps for
typical distance scenes but can require a very long scanning
time. The second class of approaches uses a geometric for-
mulation known as triangulation to infer the depth. The last
category is based on the imaging cues. This category is also
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known as the shape from X approaches, where X can be
stereo, texture, shading, motion, or defocus.

Alternatively, we can also define the 3-D recovery
approaches into two classes: passive and active techniques.
There is a clear distinction between the passive and active
techniques in terms of whether an active source/illumination
pattern is considered or not. Passive techniques, such as
stereo and shape from motion, use at least two images to
perform multiple-view correspondence matching."? The
depth is extracted from either the disparity or motion vectors
after matching. The main drawbacks of these techniques are
that they are computationally expensive to either perform
correspondence matching or feature tracking, and there are
occlusion problems in scene areas that are visible only by
one camera.> Other passive techniques include shape from
shading and shape from texture. By using only a single
image, the depth ambiguities can be retrieved. However,
these techniques are only complementary to other strategies.
Overall, the common bottleneck shared among all the
passive techniques is that the depth cannot be computed
accurately in the case of weak texture or textureless scenes.*
Meanwhile, active techniques use active illumination to solve
texture problems and are generally based on the principle
of structured light. The most well-known active techniques
are the light-striping method, Moiré interferometry, and
Fourier-transform profilometry.»® Depth can be extracted
from the image deformation of the projected pattern.”-%!”
Nevertheless, Moiré interferometry and Fourier-transform
profilometry return only a relative depth, not an absolute
depth. Recently, another prominent technique, known as
shape from focus/defocus, has received a remarkable amount
of interest. DFF requires several images to be taken, with
small incrementing focus settings.’”'! Depth is estimated by
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Fig. 1 Model for the proposed approach.

searching for the best focused point through the image stack.
Meanwhile, the DFD can use as few as two images with
different optical geometric settings to evaluate the difference
in the blur level between each point in the defocused
images.'>'® Therefore, DFD has advantages over DFF
during the image-acquisition process, when scene objects
may change their position, dynamically. However, it is also
computationally expensive to return a reliable depth map.
Depth from focus/defocus is an example of the case where
it can be specified as either a passive or active approach,
depending on whether or not it is possible to project a
structure of light onto the scene.

Our approach uses a novel active range sensor and com-
bines both depth from focus and depth from defocus with
the help of light-pattern projection. This method falls into
both the imaging-cues approach and the active structured-
light-based approach. The aim is to introduce a new and
alternative approach to solving some of the specific prob-
lems found in classical approaches, such as the weak texture
surface and occlusion problem. With this approach, projected
light-pattern images are acquired within certain ranges, simi-
lar to the DFF approach, but the numbers of captured images
are much smaller and the images do not need to be sharp.
In traditional DFD, blur estimation is a very difficult prob-
lem because a point that represents the defocus information
has contributions from several point-spread functions (PSFs)
that are induced by different depths. Our method avoids this
problem because we can control the deformation by placing
an additional semi-transparent screen after the light source.
Therefore, by considering the light pattern as a plane, one
point on the object representing defocus information cor-
responds to only one PSF. Moreover, when the projected
patterns are out of focus, we assume that their PSFs follow
a Gaussian distribution. Eventually, the relationship between
the set of PSFs obtained from different blurs and the variation
of the object depths can be determined.

The structure of this paper is as follows: We begin with the
prototype principle and the system components. On the basis
of fundamental background, we derive the depth-estimation
model, accordingly. We describe the implementation and ob-
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tain experimental results in Secs. 2 and 3, respectively. In
the last section, we conclude this paper by summarizing the
performance expectations of this new technique and discuss
further research perspectives. The contributions of this paper
are the demonstration of a novel 3-D retrieval approach that
is based on active structured light and the investigation of
their benefits over other 3-D recovery methods.

2 Proposed Shape Recovery Method
2.1 Prototype Principle

A new prototype of range sensors has been developed. We
integrate both depth from focus and depth from defocus with
the use of dynamic structured light. A video projector is used
as a light source to produce strong projecting light patterns.
It is much more powerful compared to normal lamps and
much simpler compared to light-emitting diodes (LEDs).
Moreover, it moderates the additional pattern modifications
that are needed for different types of surface textures.

Figure 1 illustrates the overall design of the system. The
main purpose of using a semitransparent screen is to control
the defocus level that corresponds to each screen position. It
also helps to solve the magnification problem caused by the
fact that the projected light patterns from the video projector
are originally small compared to the patterns projected on
the object without passing through the screen. Reducing the
intensity of the powerful light is an additional advantage.
Because the normal lamp provides insufficient brightness,
the video projector sometimes produces too strong a light,
which can be adjusted by a projector setting or by putting
in some blocking elements. The beam splitter is mainly used
to observe the object on the sensor, and it allows for the
projection of a light pattern onto the object. The entire setup
can be separated into three systems.

2.1.1 Light pattern projection system

In Fig. 2, the video projector projects the elementary light
pattern of size N xM pixels. Consequently, we observe a
light pattern of size H x L mm on the screen. The size of the
input pattern from the video projector (N x M) and the size
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of the pattern that appears on the screen (H x L) indicate the
resolution of the light pattern. We aim to project the sharp
elementary pattern of size P on the screen regardless of the
positions. However, at some screen displacements, we may
need to adjust the video projector to maintain the pattern
sharpness.

2.1.2 Main optical system

The system is considered from the light pattern on the screen
(size P), projecting through a specific optical system onto
the object. The optical components of the system consists
of a semitransparent screen, a compound lens, and a beam
splitter. An elementary size of the light pattern that appears
on the object is denoted as P’. The optical path of the system
is illustrated in Fig. 3.
The magnification of this system can be written as

where y is the main optical system magnification, d is the
distance from the light pattern on the screen to the additional
compound lens, and d’ is the distance from the additional
compound lens to the object.

In general, for the ideal case where the object is placed
in or very close to the surface of the best focus, an output
image formed on the sensor is sharp or identical to the input.
The relationship between the input and output images is the
following:

~

I =18 > =1, 3)

However, our concern is deformation, where a semi-
transparent screen’s displacements are varied at different
depths of field. The blurring function has an influence on
the system and therefore must be taken into account. The
defocused output image can be rewritten as the convolution
between the input image and a blurring function #, as follows:

I'=1Iyp*xhga, @

where h, o are the blurring functions (PSF) corresponding
to distance d and d'.

For conceptual simplicity, the PSF of the camera is usually
assumed to be a two-dimensional Gaussian when paraxial ge-
ometric optics are used, and diffraction effects are negligible,

PSF = h(x, y) = e~y 207 5)

2no?

When we know the input and output images, we could de-
termine the PSF accordingly. The extracted PSF is then used
for depth computation.

2.1.3 Acquisition system

The acquisition system captures objects with projected light
patterns (size P’) to the sensor via a beam splitter. The ob-

P d . . .
y=—=—. (1) served pattern size on the sensor is denoted as P”. The optical
P d path of the system is simplified, as shown in Fig. 4. The mag-
nification of this system is
Thus,
P// l/
Pd’ ==
P'=—, 2) Y P’ 1 (6)
d
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Screen
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P b el
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Object
d d'
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Fig. 3 Main optical system.
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where y’ is the acquisition system magnification, [ is the
distance from the light pattern on the object to the camera
lens, and [’ is the distance from the camera lens to the sensor.

The relationship between the sizes (in pixels) of the pattern
P” on the sensor and of the elementary pattern from the video
projector is used for the light-pattern specification (width
and density). Only 1 pixel of the light pattern (from the light
source) may require several representing pixels on any of the
captured images.

This concludes the prototype principles. The correspond-
ing practical implementation is detailed in Sec. 3. We now
explain the theoretical relationship between the blur level
(the spread parameter) and the depth.

2.2 Depth Estimation

The scene can be captured in either a sharp or blurred form,
depending on the convergence of all the light rays from a
single point on the object. The object appears sharp if each
point on the object plane is projected onto the image plane.
However, if the sensor plane and image plane are misaligned,
then the image is distributed over a circular patch called a
circle of confusion (CoC) on the sensing element, resulting
in a blurred image.* '3 Therefore, the blur level can be deter-
mined from the diameter of the CoC, which also increases
proportionally to the distance from the object in focus. This
phenomenon allows us to estimate the geometry of the scene
by measuring the amount of blur in the image.

Figure 5 represents the camera geometry of the cam-
era lens (compound lens) with variable camera parameters

7 Compound Lens
Semi-Transparent Screen

(s, f, D). Here, s specifies the sensor distance (||H'C’|),
f specifies the focal length (||H'F’|)), v is the object dis-
tance (||H'A’||), and D is the aperture diameter. According
to paraxial geometric optics, to define the radius of the circle
of confusion, the knowledge of similar triangles is applied,

IF7A| - JACT X

®)

The normalized diameter of the CoC can be rearranged
into the following:

D/2
IF7A|
where x is the object distance and ¢ is the diameter of the
CoC.

The higher the degree of blur is, the larger the CoC. The

CoC is also proportional to the value of spread parameter o
and can be written as

o=K¢,

¢ =x ©)

(10)

where K is a positive constant.

Given a spread parameter o, aperture size D, and the
controllable distance |[F’A’|, the only unknown of the
system [see Eq. (9)] is x. Eventually, we can derive the
object distance x, which directly relates to the real depth of
the object as

20 - ||F'A||

X.D 1D

x = +Kso, (12)

where K, is a positive constant for a given position of the
screen.

The aim of the whole system is to achieve the object
depth x. The extracted PSFs are used for spread parameter o
computation. However, K> is an unknown variable. Another
concern is that the pattern on the screen at different displace-
ments may not be constant, even after tuning a video projector
for the best sharpness. Moreover, the distance / varies accord-
ing to the object depths, which is also an unknown variable.
To solve these problems, the calibration process is required.
The depth is eventually computed by using a derived depth
formula with the parameters obtained from calibration.
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Fig. 5 Camera geometry of compound lens.
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2.3 Design of Dynamic Light Pattern

All passive techniques share the same inherent weakness
when the nature of an object’s texture is poor. A weakly
textured surface does not provide sufficient details for depth
estimation because both the focus and defocus give the same
representation. An effective solution to solve this problem
is to employ an active illumination pattern. The structured
light source projects a pattern on the scene through a spe-
cific optical setting while the camera captures it. Because
the original projected light source is known, the defocus blur
introduced by the depth in the scene can be measured against
the original pattern. The choice of an appropriate light pat-
tern is important to optimize our final reconstruction. Highly
textured light patterns are forced onto the object, improving
the overall depth recovery system to be reliable and more
precise. Moreover, to avoid rotational variance, it should be
designed in a symmetrical or semi-symmetrical arrangement.
The density of the projected pattern or its spatial frequency
should correspond to the frequency of the height variation
to be captured. For example, an object with a high level of
detail requires a finer texture, whereas an object with smooth
structural changes can use a sparse pattern instead. To be
specific, for the object with small depth variations, we can
reduce the processing time by projecting the sparse pattern
instead. There are fewer intensity profiles to be analyzed, and
it returns sufficient results that are similar to the results from
a denser pattern projection. For our experiment, we employ a
set of parallel stripes with regular spacing. Spacing and shift-
ing step sizes are determined from the scale of the texture
to be analyzed. The width of the lines and the density of the
pattern are selected according to Eq. (7), to cover as much
of the reconstructed area as possible. Figure 6 illustrates a
sample of a stripe light pattern with a width of 1 pixel and 20
pixels for spacing in between.

3 Implementation

In our experiment, a Canon SX80 Mark II video projector
with a resolution of 1400 x 1050 is used as the light source.
The horizontal stripe illumination patterns with a width of
1 pixel and 20 pixels for spacing are applied. The beam of
the projecting light pattern then reaches the semi-transparent
screen and an additional lens (Canon telephoto lens 135 mm).
The light rays passing through the lens are split into two
directions by the beam splitter. One beam is projected onto
the object, and another is transmitted from the object to the
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sensor. The scene object is captured using a Canon EOS-1Ds
camera with an attached 50-mm lens. The data flowchart
illustrated in Fig. 7 describes the main operations.

3.1 Image Acquisition

The camera settings (e.g., F, ISO, shutter speed) are carefully
tuned such that the system keeps the whole object sharp in all
the images and only the defocused patterns experience varied
deformation according to the object’s depth. All the optical
components in this setup are fixed. Only the semi-transparent
screen is moved, which results in several scene images with
different blur levels. With this specific setting, we can ana-
lyze the defocus of the light pattern projecting on the object.
We calibrate the system using a planar surface at five dif-
ferent depths (D1— D5). Each plane is captured through the
projection of six screen displacements (P/1— P[6), result-
ing in a total of 30 calibrated images. Similarly, we apply
the same procedure to the test object and obtain six images.
Before starting the main algorithm, the acquired images are
preprocessed. First, we convert image from the RGB to the
gray-scale level. Next, we crop the images, selecting only
the effective areas, which are object-projecting regions within
the beam splitter.

3.2 Image Profile Analysis

From a particular viewpoint, a 3-D object can be thought
of as the variation in depth over the object. However, these
depth variations are missing during the process of imaging,
and what remains are the intensity variations that are in-
duced by the shape and the lighting. The profile analysis
is performed to extract the intensity values along multiline
paths of the images. The algorithm computes equally spaced
points along the specified path and uses interpolation to de-
termine the image intensities for each point. This operation
is performed along an orthogonal direction to the axis of the
pattern projection. To be precise, when the projected pattern
is the horizontal stripes, the vertical profile analysis will be
applied column by column, whereas for the vertical stripe
pattern, the horizontal profile will be analyzed row by row.
The output is stored in the profile stacks regarding their in-
tensities and pixel coordinates. In either column- or rowwise
approaches, profile analysis will provide numbers of peaks
corresponding to the numbers of stripe patterns. Each peak
occurs at the center of its pattern and decays along both sides
with a different speed. This scenario is based on the same
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concept that explains why the focused or sharp pattern gives
a smaller width and higher profile intensity than the blurred
pattern.

3.3 Pafttern Localization

Each single profile obtained previously contains either im-
portant data or noise. The difficult task is to differentiate the
noise from the important signal before localizing the inten-
sity pattern. The aim is to smooth the noisy part and maintain
the important intensity details, simultaneously. We selected
the Savitzky—Golay (Sgolay) filter,”® which is a smoothing
polynomial or a least-squares smoothing filter. It is very ef-
fective and works well for our type of signal, unlike typical
Finite Impulse Response (FIR) filters, which tend to filter out
a significant portion of the signal’s high-frequency content
along with the noise. To define a pattern cutoff coordinate, we
extracted the local maximum and minimum by an absolute
peak detection algorithm. We prefer a non-derivative method
because finding the zero-crossing of first derivative can yield
false results in the presence of noise. Moreover, we compute
another controlled parameter (§) regarding the highest slope
between the local maxima and local minima on both spans.
This approach is applied to guarantee that we optimize the
cutoff portion of the significant information as much as pos-
sible (see Fig. 8). In addition, when the object sharpness is
varied over a wide range of depths, the blur levels in the far
focus region are also considered noise. To eliminate these
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high defocused profiles, a contrast criterion is also applied.
By setting the significant contrast, we can discard the defo-
cused profile, in which the ratio between the maximum and
minimum is lower than the contrast. We obtain proper cutoffs
to isolate the light pattern in each intensity profile.

3.4 Spread Parameter Calculation

The distribution of light energy within the blur circle is re-
ferred to as the PSF. Because of the lens aberrations and
diffraction effects, the PSF will be a circular blob, with its
brightness falling off gradually rather than sharply. Thus,
most algorithms use a two-dimensional Gaussian function
instead of the Pillbox function. From the pattern patches
isolated by pattern localization, we determine their PSF in-
dividually. The spread parameters o can be extracted from
the fitting between PSF and Gaussian model as exemplified
in Fig. 9. The spread parameter is used to indicate the blur
level in defocused images. Consequently, the depth can be
deduced and assigned back to the pixel coordinates or the
local maxima defined earlier. We iterate this algorithm for all
the light patterns that cover the whole object.

3.5 Depth Calibration

Depth calibration is performed only once by using five planar
surfaces (D1—DS5). The aim is to build the model defining
the depth according to the value of the spread parameter
o at specific screen positions (P/). In an ideal case using
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Eq. (12), we can plot the relationship of the depth x against
the spread parameter o, as illustrated in Fig. 10. This plot
consists of two tangent lines having zero as a minimum at the
center. Nonetheless, in practice, the elementary pattern has a
minimum size on the captured image (see Eq. (7)), causing a
nonproportional law. To be specific, the spread parameter o
is not proportional to the object depth x for a small blurred
interval around the center. Moreover, the optical system has
certain acceptable sharp ranges related to the depth of field
(DOF), resulting in a smooth valley instead of a sharp cut at

3 T T T T T T T T

Gaussian Fitting

—— PSF Model
» Gaussian Model

25}

05 1 1 1 1 1 1 Il 1
0

Fig. 9 Example of Gaussian fitting.
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the nadir. Therefore, we assume that the closed-form model
follows the parabolic function as follows:

o =ax*>+bx +c. (13)

Generally, if we have three unknowns and three equations,
we can solve it as a linear problem. However, our system is
dealing with more constraints. For each screen position, we
calibrate five depths, which lead up to five equations. There-
fore, with three unknowns (a, b, c) and five equations, we
obtain an overdetermined system, which is solved in the

Spread Parameter (o)

: \
Practical Model /‘(

(Parabola) \

Depth

Ideal Model

Fig. 10 Ideal depth model and the practical conic model.
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least-squares sense using the well-known Levenberg—
Marquardt (LM) optimization algorithm.!?

3.6 Candidate Depths Computation

For the real object used in the experiment, we follow the same
manipulation for image acquisition, image profile analysis,
pattern localization, and spread parameter calculation. Once
we obtain o, we can determine the candidate depths. By using
the already-extracted parabola parameters (a, b, ¢) from the
depth calibration, we solve Eq. (13) for the final depth x. As
seen in Fig. 11, it returns two possible solutions for x; and
X7, as follows:

_h — 2 _ -
N = b \/b2a4a(c o)’ (14)

X2

—b++/b*—4da(c—0o

= ( ). (15)
2a

Therefore, we need an additional clue called the reference

map to make the decision.

3.7 Final Depth Evaluation

One spread parameter o corresponds to two candidate depths.
To select the correct depth value, we employ the reference
map obtained from the spread parameter calculation during
the calibration process; it is the mapping of the spread param-
eter at each screen position for all of the calibrated depths.
Consider the reference map that is shown in Fig. 12. We
plot the spread parameters of our object (to be reconstructed)
according to their six observed screen positions. Then, we
compute the minimum global distance, comparing them to
five calibrated depths. This step is to roughly define to which
calibrated depth our object belongs. Eventually, the nearest
candidate depth value closest to the calibrated depth will be
selected as the final depth.

4 Experimental Results

We conducted experiments using an acrylonitrile butadiene
styrene (ABS) plastic built by a 3-D printer as the test objects.
The model of the 3-D printer is a Dimension Elite (Stratasys
Inc., Eden Prairie, MN). Without coating, the material has
some reflectivity. Two types of surfaces have been tested: a
planar and a pyramidal structure (see Fig. 13). A sequence of
light-pattern images is shown in Fig. 14. They are acquired at
different projecting distances (physical displacement of 1 cm

Calibrated Depth

20 T T T

Spread Parameter ()

T T T
__+ D5
+ D1
_+ D4
\P D2
—— D3
| | | |

4 5 6

Screen Position (Pl)

Fig. 12 Reference map.
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(a)

(b)

Fig. 13 Scene objects: (a) staircase and (b) pyramid.

between each screen position). Because of some constraints
of our optical setup (e.g., telephoto lens distortion and beam-
splitter size), the effective reconstruction areas are limited
only at the center of the beam splitter. The input images
are then put into the stack for profile analysis and pattern
localization. For each isolated light pattern, the spread
parameter is extracted by fitting the PSF to the Gaussian
model. The candidate depths are then calculated by Eqs. (14)
and (15), with the already known parabolic parameters from
the calibration process. In the final step, the final depth is
determined by taking the reference map into consideration.
The rough 3-D model presents some preliminary results
that are obtained from our implementation. The depth map,
illustrated in Fig. 15(a), demonstrates the effective perfor-
mance of the method in the case of the planar structure. A
staircase object has a minimum depth at 2 cm, increasing
on both sides by 1 cm until the maximum depth of 4 cm is

Screen Position 1 | Screen Position 2| Screen Position

Screen Position 4 | Screen Position 5| Screen Position

K]

6

reached. The result shows that both the real object depth and
our estimated depth lie within close proximity. Figure 15(b)
illustrates the depth map of the pyramid object, in which we
can also retrieve the intermediate depths that do not exist dur-
ing the calibration process. We performed the 3-D modeling
as shown in Fig. 16. The result is compared to the actual depth
provided for the 3-D printer. The quantitative evaluations are
presented in Table 1. Both test objects have an average error
of <0.3 mm.

Denser point clouds and higher quality 3-D reconstruc-
tion can be obtained once the variation and the number
of projected light patterns increase. The total process can
be time consuming. With non-optimized MATLAB code, the
program takes <1 min of computational time (on the ma-
chine equipped with a core 2 duo 2.2 GHz), excluding pro-
file analysis and calibration. However, the benefit of our ap-
proach is that most of the processes that require a long time

Screen Position 1] Screen Position 2| Screen Position 3

Screen Position 4 | Screen Position 5] Screen Position 6

Fig. 14 Captured images: (a) staircase and (b) pyramid.
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Fig. 15 Depth map: (a) staircase and (b) pyramid.

computation are offline processes. The calibration is required
only once for a certain object material. Therefore, if we al-
ready have calibration data for a set of object materials, we
will be able to create a 3-D model quite quickly, as reported
in Table 1.

Table 1 Experimental results.

Staircase Pyramid
No. point cloud 8784 6375
Average error (mm) 0.17780 0.28429
Standard deviation 0.28609 0.34347
Computational time? (s) 31.901 19.150
Computational Time® (s) 208.099 203.790

aExcluding offline profile analysis and calibration.
bOffline profile analysis and calibration.

(@

5 Conclusions

We have introduced a new 3-D reconstruction method that
merge depth from focus and depth from defocus. It can be em-
ployed as a stand-alone strategy that returns reliable dense
depth maps. The method overcomes the problem of weak
textures by projecting an illumination pattern. Moreover, it
suffers neither from the correspondence problem nor the oc-
clusion problem found in traditional approaches. Examples
of applications can be found in biological specimen analysis
and in defect metallic component detection.

Several components in the setup limit the size of the ob-
ject itself and the maximum change of the object depths.
However, this is due to the scale of the system. This issue
can be fixed by adjusting the smaller or larger optical compo-
nents for the smaller or larger objects, respectively, while the
algorithm remains unchanged. Therefore, these restrictions
are not concerned with the approach of the methodology.
Another disadvantage of the system is that no dense data
can be obtained from a single illumination pattern because
of the limitation of the profile analysis method. For further
improvement, we will try to determine the depth for every
single screen estimate and run the experiment systematically
by robot, to significantly minimize human error and to in-
crease overall precision of the system. Another future project
is to use several mini video projectors and beam splitters to

(b

Fig. 16 Rough 3-D reconstruction of pyramid structure: (a) pointcloud and (b) surface fitting.
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develop a 3-D progressive feedback system by controlling
the light patterns. Only useful defocused input images would
be selected iteratively based on a rough 3-D model. The first
perspective of this work is to address the problem of the
depth and reflectance discontinuities of the object. The rel-
evant concept is to perform deep analysis of the Gaussian
model. To be precise, the Gaussian model at these discon-
tinuities will not be close to the reference model (Gaussian
distribution). Therefore, these asymmetrical models will be
discarded. To determine the depth of this problematic re-
gion, we plan to employ another type of light pattern within
the 3-D progressive system. For example, if this issue oc-
curs from using a horizontal stripe pattern, then it would not
be a problem when we are using a vertical stripe pattern.
Another perspective is to address the scenes with multiple
objects with different types of textures and texture varia-
tions. The possible solution is to collect sufficient numbers
of calibration databases and/or reflectance indexes for all
the object materials that exist in the scene. The key idea is
that certain materials provide different reflectances, differ-
ent widths of blur (CoC), and different spread parameters,
accordingly. For instance, some types of plastic have larger
blur levels (larger spread parameters) than can be observed
from metallic material at the same depth distance. Therefore,
it should be possible to set the order of reflectance and/or
blur level with respect to the material types. Then, by match-
ing them with the test objects, we could identify material
types and use the current algorithm. Eventually, our last per-
spective will focus on the estimation of the surface normal
by analyzing the deformation of an elementary projecting
pattern.
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