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a b s t r a c t

The presence of reflection on a surface has been a long-standing problem for object recognition since it brings

negative effects on object’s color, texture and structural information. Because of that, it is not a trivial task

to recognize the surface structure affected by the reflection, especially when the object is entirely reflective.

Most of the cases, reflection is considered as noise. In this paper, we propose a novel method for entire re-

flective object sub-segmentation by transforming the reflection motion into object surface label. To the best

of our knowledge, the segmentation of entirely reflective surfaces has not been studied. The experimental

results on specular and transparent objects show that the surface structures of the reflective objects can be

revealed and the segmentation based on the surface structure outperforms the approaches in literature.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The object surface structure (OSS) describes the geometric distri-
bution of the elementary continuous surfaces of an object (the def-
inition of elementary continuous surface is given in Section 3.2).
It is a highly representative feature obtained by performing a
sub-segmentation of the surface. The understanding of the OSS is
considered as a building block for solving problems such as object
recognition, detection, and classification. For non-reflective objects,
the OSS can be easily recognized due to the object’s contour, texture,
and color. However, for the entire reflective objects, the reflective ef-
fects make the understanding of OSS extremely complicated. For in-
stance, as shown in Fig. 1, Fig. 1a is the original image of an entire
reflective object which consists of both specular and transparent sur-
faces; Fig. 1b is the ground-truth of the manual sub-segmentation ac-
cording to the OSS. We can see that due to the reflection on the object,
the boundaries are barely observable and the OSS is hard to recognize.
Moreover, because of the transparent surface, undesired components
inside the object are also visible. Thus, the sub-segmentation from
Fig. 1a to b is not a trivial task. The objective of this paper is to sub-
segment entirely reflective objects using the information provided by
reflection.

In this paper, the reflection motion features are extracted in the
image sequence as spatiotemporal information, then object is seg-
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mented by taking these features in order to understand the OSS. Both
the camera and object are fixed, the light source is moving around the
object in order to produce reflection particles (RP) on the object sur-
face. The surface is supposed to be piecewise elementary continuous,
i.e. it consists of several elementary continuous subsurfaces.

We assume that while the RP are moving on the object surface,
their positions, directions, and velocities are extracted in each frame
as reflection motion features. These features are matched in all the
frames for tracking the RP in the whole sequence. The trajectories of
RP are smooth along the subsurfaces. While they are passing through
the boundary of two subsurfaces, irregular features (jumps) appear.
Thus, we stop tracking when the trajectories are not smooth enough
with respect to the previous frames. This guarantees that the trajec-
tory of a moving RP stays on the same elementary continuous subsur-
face. Then, the surface is segmented by employing flood fill method
[24] which takes the positions in the trajectory as seeds. As this pro-
cess iteratively covers all the trajectories, different surfaces of the ob-
ject could be respectively labeled.

Our primary contributions are: (1) we introduce an effective sub-
segmentation method for the reflective surface structure understand-
ing (on both specular and transparent surfaces). (2) Instead of remov-
ing reflection, we study the reflection motion and we consider it as
additional information for sub-segmentation. (3) We use the reflec-
tion motion features as spatiotemporal coherence for video segmen-
tation and fine-attributes for OSS understanding.

The rest of the paper is organized as follows. In Section 2, we give
an overview of the related work. In Section 3, we present the reflec-
tion motion features extraction and RP matching and tracking, and
also, we explain how sub-segmentation is performed in order to take
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Fig. 1. Reflective object structure understanding. (a) Original image and (b) manually

sub-segmented ground-truth image.

into account the reflection motion features. The results of our ap-
proach on multiple reflective objects and the comparison with other
segmentation methods are shown in Section 4. Conclusion and future
work directions are discussed in Section 5.

2. Related work

Dealing with reflection: Many works have been done in dealing
with reflection in the image. The most common idea is to consider
the reflection as noise, then try to remove or reduce it, such as the
methods proposed in [9,16,22,23]. However, several attempts have
been made to use information contained in reflections to extract ob-
ject features. Savarese and Perona [18,19] propose an analysis of the
relationship between a calibrated scene composed of lines through
a point, and the geometry of a curved mirror surface on which the
scene is reflected. This analysis is used to measure object surface
profile. DelPozo and Savarese [7] use static specular flows features
to detect specular surfaces on natural image. Barrois and Wohler [2]
present a method which incorporates different channels of informa-
tion, one of which is a polarization angle of light reflected from the
object surface. It provides information on the rotation of an object
relative to the camera.

Video object segmentation: Many methods have been proposed for
video object segmentation. Most existing methods attempt to ex-
ploit the temporal and spatial coherence in the image sequance, in
which pixels with similar appearance and spatiotemporal continu-
ity are grouped together over a video volume [15,17,26]. There are
also some works [12,21] that adapt graph-based image segmenta-
tion to video segmentation by building the graph in the spatiotem-
poral volume. Shi and Malik [20] use Nystrom normalized cuts, in
which the Nystrom approximation is applied to solve the normalized
cut problem for spatiotemporal grouping. Grundmann et al. [14] ap-
ply hierarchical graph-based approach in segmenting 3D RGBD point
clouds by combing depth, color, and temporal information. More-
over, about scene segmentation using RGBD data, Bergamasco et al.
[3] employ a game-theoretic clustering schema which benefits from
the macropixels pairwise similarities to combine color and depth
information.

Object sub-segmentation in detail: Approaches closest to ours in-
vestigate in extracting fine-gained attributes for object recognition
[4,8,10,11,13]. Deng and Feifei [8] present an attribute-based frame-
work for describing object in details which is generalized across ob-
ject categories. Bourdev and Malik [4] use 3D data of human body
which is annotated into different body parts to recognize the pose.
Vedaldi et al. [25] propose a method for understanding objects in
detail by studying the relation between part detection and attribute
prediction. It diagnoses the performance of classifier that pool infor-
mation from different parts of an object. However, the attributes used
by these authors are no more accurate in presence of reflection, thus
these methods are not robust in object segmentation in case of reflec-
tive surfaces.

The proposed approach extracts reflection motion features in the
image sequence as spatiotemporal information, then sub-segment
object by taking these features as fine-gained attributes in order
to understand object surface structure. Comparing to other reflec-
tion dealing methods, we do not use any prior knowledge like cali-
brated camera or textured environment. Furthermore, to the best of
our knowledge, the use of reflection motion features as spatiotem-
poral coherence for video segmentation and fine-attributes for object
structure understanding has not been yet studied.

3. Methodology

Our goal is to transform the motion of reflections into useful infor-
mation that can help to segment the different continuous surfaces of
an object. The proposed pipeline is made up of three main tasks de-
picted in Fig. 2. First step is the RP motion feature extraction; followed
by a RP tracking process; finally the sub-segmentation is conducted
by taking the RP motion trajectories as labeling information.

3.1. Motion estimation of reflection

The motion of RP provides temporal information, thus in order to
employ the RP moving information for object sub-segmentation, we
firstly extract motion features of all the moving RP in the video.

3.1.1. Reflection motion features extraction
Since our object and camera are fixed, in the video, movements

could only be produced by reflections due to the movement of the
light source (Fig. 3). We use the motion history image [1,6] (MHI)
to extract RP. The MHI Hτ (x, y, t) can be computed from an update
function "τ (x, y, t):

Hτ (x, y, t) =
{
τ i f "τ (x, y, t)=1
max(0, Hτ (x, y, t−1)−δ) i f "τ (x, y, t)=0

(1)

Precisely, if "τ (x, y, t) = 1, then the pixel at position (x, y) in t-th
frame has moved. The duration τ decides the temporal extent of the
movement, and δ is the decay parameter. More details refer to [1,6].
This leads to a static scalar valued image where the more recently
moving pixels are brighter. Then the moving direction can be effi-
ciently calculated by convolution with separable Sobel filters in the X

Fig. 2. Illustration of the proposed pipeline (see text for details).
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Fig. 3. (a) Original frame; and (b) motion history image of current frame. White pixels

represent moving reflection particles. Red clocks represent moving directions of corre-

spondent reflection particles. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

and Y directions yielding the spatial derivatives: Fx(x, y) and Fy(x, y),
respectively. The gradient orientation (∅) of the pixel is:

∅ = arctan
Fy(x, y)

Fx(x, y)
. (2)

Note that these gradient vectors will point orthogonally to moving
object boundaries at each step in the MHI. It gives us a normal optical
flow representation. After that, a downward stepping flood fill [24]
is used to label motion regions connected to the current MHI. In this
method, one puts a connected RP to be a family of neighbor pixels
having similar motion direction. From the frame at time t, we extract
the n moving RP (later denoted by Ct

i
, i ∈ [1 : n]) as 8-connected pixels

of the similar motion. From each Ct
i
, a motion feature vector f (Ct

i
) ={

dt
i
, pt

i

}
is extracted, where dt

i
and pt

i
present the direction and the

position of the RP, respectively. dt
i

is obtained by taking the average
direction of all the pixels in Ct

i
while pt

i
is the center of a bounding

box that contains Ct
i
. The motion features are used in the following

section to match and track each RP in the image sequences.

3.1.2. Reflection particles matching
As the motion features f (Ct

i
) are extracted independently from

each frame, the matching should be adapted to link the temporal in-
formation and to filter the impossible match. The matching of a refer-
ence particle feature f (Ct

i
) and a candidate particle feature f (Ct+$t

j
)

needs to satisfy two following constraints:

errp(i, j) =
√

(pt
i
.x − pt+$t

j
.x)2 + (pt

i
.y − pt+$t

j
.y)2 < δ, (3)

errd(i, j) = (dt
i − dt+$t

j )2 < α. (4)

We set α = 20 and δ = 10 based on the experiment results. Eq. (3)
shows the condition of particle position,where errp(i, j) is the position
difference between Ct

i
and Ct+$t

j
. Eq. (4) gives the condition of mov-

ing direction, where errd(i, j) is the direction difference between Ct
i

and Ct+$t
j

. From a pair of matched features, a velocity feature vt+$t
j

is

computed by:

vt+$t
i =

√
(pt

i
.x − pt+$t

j
.x)2 + (pt

i
.y − pt+$t

j
.y)2

$t
. (5)

Then the updated motion feature of the reference particle is
f (Ct+$t

i
) =

{
dt+$t

i
, pt+$t

i
, vt+$t

i

}
. The matching algorithm is illus-

trated as follows.
If no candidate particle features can be matched to reference par-

ticle feature, f (Ct+$t
i

) will be updated using the previous reference
feature f (Ct

i
). On the other side, if there exist several candidate parti-

cle features which could be matched to f (Ct
i
), the Ct

i
is computed as

argmin{errd(i, j)}.

Algorithm 1 Reflection particles matching.

Input: f (Ct
i
) =

{
dt

i
, pt

i

}
, f (Ct+$t

j
) =

{
dt+$t

j
, pt+$t

j

}
.

Output: f (Ct+$t
i

).

do matching f (Ct
i
) and f (Ct+$t

j
) with Eqs. (3) and (4)

if matching is true then

1. compute vt+$t
i

by using Eq. (5)

2. update f (Ct
i
) to f (Ct+$t

i
)

3. return f (Ct+$t
i

)

else

1. f (Ct+$t
i

) = f (Ct
i
)

2. return f (Ct+$t
i

)

Fig. 4. Reflection moving trajectories. (a) 15 longest trajectories and (b) all the trajec-

tories. (For interpretation of the references to color in this figure, the reader is referred

to the web version of this article.)

3.1.3. Reflection particles tracking
The tracking of RP suffers from several problems: the high fre-

quency of appearance and disappearance of the RP, the shape evo-
lution of the RP, as well as multiple reference RP need to be tracked
in the same time. Our tracker is composed by an iterative matching
computation. The tracker is initialized for each detection, the state of
a reference RP (Ct

i
) is presented as S(Ct

i
) =

{
pt

i
, dt

i
, vt

i

}
. The state tran-

sition density is defined as follows:

pt
i = pt−1

i + vt−1
i × 1, vt

i = vt−$t
i . (6)

The sampling processes a predictive circle window with the ra-
dius of δ and the center at the position predicted by Eq. (6). It is
due to the RP motion features have already been extracted in each
frame. Instead of sampling candidate RP (note as cct

j
with its feature

f (cct
j
) =

{
dct

i
, pct

i
, vct

i

}
) with a weight which costs computational ex-

tremely expensive, a predictive sampling window is employed. Then
each reference RP and candidate RP pair in the predictive window is
scored by the difference of the moving direction:

errc
d(ct

i , cct
j) = (dt

i − dct
j)

2, (7)

and the argmin{errc
d
(ct

i
, cct

j
} is computed to find the best match. Here

we also present a threshold parameter β to break current reference
RP tracking when the RP moving direction hugely changes. In our ex-
periments, the value of β is set to 30. This tracking phase guarantees
to keep all the associated RP on the same surface.

During tracking RP in frames, positions of all tracking results are
saved as the moving trajectory. The trajectory of Ci is denoted as
T(Ci) =

{
p1

i , p2
i , ...pt

i
,
}

. One trajectory is considered as one label for
a continuous surface on the object. As the RP could go through one
surface in different directions, we save trajectories respectively for
each direction. In this case, it ensures that one trajectory labels only
one surface. On the other hand, some trajectories label the same sur-
face. In Fig. 4, one color presents one trajectory of moving reflection;
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Fig. 5. (a, b) Discontinuous surfaces and (c) elementary continuous surface.

Fig. 4a contains 10 longest trajectories, Fig.4b contains all the trajec-
tories.

3.2. Continuous surfaces segmentation

In order to solve the problem of multi-labeled surfaces, an iter-
ative surfaces segmentation is computed on the object based on RP
moving trajectories. For convenience, we introduce a notation of an
elementary continuous surface. It is defined according to the varia-
tion of γ of the object surface, γ being the difference between two
neighbor normals. Then at each point of the surface, if the corre-
sponding γ is below the threshold parameter ψ , the surface is con-
sidered as an elementary continuous surface, otherwise it is not. In
fact, ψ denotes the limit of a surface normal variance which is not vis-
ible in the image. We put the distance between two neighbor points
on the object surface equal to 1 mm. After experiments on various
objects, ψ is set to be equal 2.2 degrees. As can be seen, Fig. 5a and b
shows both discontinuous surfaces since their variations of γ are be-
yond the threshold parameter ψ , while Fig.5c is an elementary con-
tinuous surface since γ is small.

Segmentation of the elementary continuous surfaces is to de-
scribe the surface structure of the object. As some trajectories are la-
beling the same surface, an iterative flood fill function is applied to
merge the segmentation results of different trajectories on the same
surface. The seeds which need to be flood filled are systematic sam-
pled positions with a skip of 5 in the trajectory. Since the surface
is elementary continuous, a trajectory can cover the surface regions
with different brightness levels, the flood fill produces only one sur-
face and the reflection does not produce additional sebsegments. The
flood fill method which we used during the segmentation is the same
for the reflection particle detection. The pixel value I(x, y) is consid-
ered to belong to the labeling domain if:

I(x′, y′) − dl < I(x, y) < I(x′, y′) + dh, (8)

where dl and dh stand for maximum lower/upper brightness differ-
ence between the current observed pixel and one of its neighbors be-
longing to the surface, respectively. Algorithm of the segmentation
process is illustrated as follows.

Since the trajectories do not have the same length and they
may contain numerous positions, we order trajectories by increas-
ing lengths and then systematic sample the positions by a skip of 5.
Finally the flood fill is performed by starting from the sampled seeds
in shorter trajectories to the sampled seeds in longer trajectories. In
case of an elementary continuous surface, the segments containing
shorter trajectories could be merged into other segments if there ex-
ists a suitable longer trajectory which covers all the segments. In this
case, segments containing the seeds of shorter trajectories are rela-
beled according to the labeling of seeds of longer trajectory. As the

Algorithm 2 Segmentation process.

1. Trajectory sampling
(a) Sort trajectories by size in increasing order
(b) Systematic sampling of each trajectory with a skip of 5

2. Segmentation
(a) Update filling color to the color of T(Ci)
(b) Flood fill all pt

i
∈ T(Ci) with current filling color

3. Morphology component regrouping
(a) Update current filling color to the color of T(Cj)
(b) Regroup and fill all the components passed by T(Cj) with cur-

rent filling color (i < j)
4. Final processing

(a) Fill holes which are surrounded by segmented regions with
the surrounding color

reflection on the surface is highly variable, the segmentation phase
might not cover the whole surfaces. In consequence, the final pro-
cessing fills the holes which are surrounded by segmented regions
with the surrounding color.

4. Results and evaluation

The experiments are conducted in using the camera with the res-
olution of 5 megapixels. An LED grow light is used to produce reflec-
tions on the object. Note that the light source is consisted by multi-
ple light dots and it can be any shape, here we use a circle one. For
the outdoor experiments, two projectors are used. The number of ac-
quired frames depends on the complexity of the object surfaces and
the number of light sources. In order to keep a reasonable number
of acquired images, our LED grow light contains 30 light spots. The
ground-truth images are manually labeled according to the 3D mod-
els of the objects which are obtained by a non-contact 3D digitizer
VI-910.

4.1. Implementation and processing time

The method is implemented in Matlab and executed on a laptop
with Inter(R) Core(TM)i7-360QM CPU@ 2.30 GHz. As previously men-
tioned, the processing time varies according to the complexity of the
object surfaces and the number of light sources. The frame size in
our experiment is 1280 × 720. Regarding indoor experiments, as the
light source is a LED grow light that contains 30 light spots, it yields a
processing time of 0.8–0.95 s per image for the segmentation. About
the outdoor experiments, as two projectors are used to produce the
reflection, the tracking of reflections are much less complicated and
less trajectories are saved. The processing time is 0.2–0.3 s per image
for the segmentation. For both indoor and outdoor experiments, the
objects which have less than 5 surfaces, the video length can be con-
trolled in 5 s. On the other hand, for the objects which have about 10
surfaces, the video needs to be of 7-8 s.

4.2. Qualitative results

As the considered objects are reflective and/or transparent, the
images contain many high-variability regions. Three of the compari-
son segmentation methods are graph based method [12,15]. They are
based on k nearest neighbors, adjacent, and hierarchical graph, re-
spectively. The graph-based methods are chosen since they have the
ability to preserve detail in low-variability image regions while ignor-
ing detail in high-variability regions. The forth comparison method is
EM segmentation [5]. It is a pixel clustering method in a joint feature
space. It segments the image with the information from different as-
pects (color–texture–position). Over 20 objects have been processed,
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Fig. 6. ROC curve for the objects. All the curves were generated in using dl from 1.5 to

5.5, dh from 6.5 to 9.5. Each point corresponds to one combination of dl and dh . Objects

with more subsurfaces have smoother curves.

7 of them are shown in Fig. 7. Due to the similarity of the three graph-
based results and the lack of space, only KNN graph-based results are
illustrated in Fig. 7. The objects Cover, Ball and Car2 have completely
specular surfaces, the third object Scotch is transparent, and the other
three objects contain both specular and transparent surfaces. The ex-
periments for two cars are carried out outdoors. From the results, we
can see that graph-based methods work reasonable in segmenting
the object, but about the sub-segmentation of the object surfaces, it
does not work meaningfully. EM segmentation preserves very well
the contour of the objects but also the contour of the reflection that
yields the poor sub-segmentation performance. Conspicuously, the
results obtained by our method are more accurate. In consequence of
a high sub-segmentation performance, the OSS is well presented.

4.3. Quantitative evaluation of our segmentation results

The purpose of our object surfaces segmentation is to understand
the structure of the reflective objects. Therefore, to evaluate our pro-
posed method, we manually labeled all the elementary continuous
surfaces of the object to generate the ground-truth image as refer-
ence. Then we verify the segmentation performance with a pixel-
wise evaluation.

4.3.1. Evaluation in details
To evaluate our proposed method in details, we calculate true pos-

itives (TP), false positives (FP), false negatives (FN), precision and re-
call for each surface, which are computed as follows:

TP = NTP

PG
, FP = NFP

PD
, (9)

precision = NTP

NTP + NFP
, (10)

recall = NTP

NTP + NFN
, (11)

where NTP, NFP, NFN stand for the number of the true positive pix-
els, false positive pixels and false negative pixels, respectively; PD, PG,
ND, NG stand for number of positives detected, number of positives
in ground-truth mask, number of negatives detected and number of
negatives in ground-truth. After computing precision and recall for
each surface, a weighted combination of evaluations on each surface

is proposed to verify the entire performance for a whole object. The
total pixel number N of the ground-truth object is computed as:

N =
n∑

i=1

PG(i), (12)

where n is the number of surfaces. Then a weight wi is defined by
the percentage of the pixel number of current surface on that of the
whole object, where i is surface index.

wi = PD(i)
N

. (13)

With the weights of each surface, the precision (precisiono) and
recall (recallo) of the object can be computed as follows:

precisiono =
n∑

i=1

precisioni × wi; (14)

recallo =
n∑

i=1

recalli × wi; (15)

Then, we generate the receiver operating characteristic (ROC
curves) for objects in the experiment by varying the parameters dl

and dh of the flood fill method. We use 5 different values for dl ∈ [1.5,
2.5, 3.5, 4.5, 5.5] and 3 different values for dh ∈ [6.5, 7.5, 8.5]. From
the ROC curves, we can see that for Scotch, Ball and Phone, the pre-
cision values keep very high at the beginning and suddenly go down
during the raising of recall values (Fig. 6). This is due to the fact that
these objects all have two surfaces. Within the change of parame-
ters of flood fill method, the labeling color of one surface overfills the
other surface. Then the sudden overfilling makes precision value sud-
denly drop down. For the other objects, as they have approximately
ten surfaces, the curves are more smooth. For all the indoor exper-
iments (except one of the car), the precision values reach 0.99 and
recall values are more than 78. For the outdoor experiments on the
cars, under a natural environment without controlling illumination
condition except our light source, the precision values reach 0.99 and
the recall values are more than 0.88. These results illustrate the ro-
bustness of our segmentation method in OSS understanding under
different experiment conditions and of various objects.

4.3.2. Comparison with other works
To our best knowledge, no segmentation method is designed for

dealing with reflective objects; thus it is not a trivial task to compare
with other methods. Among existing methods, graph-based and re-
gion based segmentation methods are most likely to treat the case
of reflective surfaces (Fig. 7). Three graph based (KNN, adjacent, and
hierarchical) methods and one region based (EM) method are chosen
for the comparison. We would like to point out that only the proposed
method and hierarchical graph-based method [15] take advantage of
temporal information while the other two methods use static data.
We did not compare with contour based methods since in this case,
reflections would produce false true negative contours which lead to
a poor segmentation. To evaluate the segmentation performance, we
employ f-score as criterion which is a harmonic mean of precision
and recall. It is computed as:

f -score = 2 × precision × recall

precision + recall
. (16)

Therefore, we choose f-score as the criterion of segmentation per-
formance evaluation in order to compare our proposed method with
the state-of-the-art approaches. In Table 1, we compare our proposed
method to 4 well known segmentation methods. We can see that the
f-score of object ‘Cover’ is 0.76, which is much lower than for the
other objects computed by all the methods. This is due to the fact
that the surfaces of this object are concave, moving reflection van-
ish extremely quick even though the surfaces are smooth and mov-
ing trajectories are split into smaller trajectories. On the other hand,
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Fig. 7. First column: original images. Second column: ground-truth segmentation. Third column: k nearest neighborhood graph-based segmentation [12]. Forth column: EM

segmentation [5]. Last column: Segmentation by our proposed method based on reflection motion estimation. (better see in color). (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Table 1

Best f-score of the objects.

f-score Cover Ball Scotch Car Car2 Phone Watch

KNN graph [12] 0.56 0.38 0.48 0.73 0.83 0.51 0.74

Ajdacent graph [12] 0.48 0.34 0.54 0.66 0.79 0.48 0.75

EM [5] 0.17 0.41 0.46 0.54 0.27 0.79 0.47

Hierarchical graph [15] 0.46 0.32 0.39 0.72 0.81 0.43 0.44

Our method 0.76 0.84 0.89 0.86 0.93 0.91 0.84

f-score of ‘Ball’ is also only 0.84 because of the presence of high inten-
sity variations in small regions. In the experiment of object ‘Phone’,
despite the fact that intensity variations are important on the whole
object, it is not the case for small sub-regions. Thus, the final process-
ing of our method can fill the holes and yields the value of f-score
to 0.91. As for the two outdoor experiments, both provide meaning-
ful results. The f-score of Car2 reaches 0.93 which means high rate
in both precision and recall. We would like to emphasize that, in

dealing with reflective and transparent objects, our method outper-
forms significantly (at least 9% higher) the state-of-the-art methods.

5. Conclusion and perspectives

We have presented a segmentation method based on reflection
motion features in order to deal with reflective and transparent ob-
jects. Due to a simple constraints (object and camera are fixed), our
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Fig. 8. Future work: object segmentation by employing fully natural light source.

method can be widely used in the industry for object recognition and
retrieving. More importantly, instead of removing and reducing re-
flections, taking its advantage is pioneering work in a new direction.
The results show that the reflection motion features can be used as
a robust signature for labeling continuous surfaces on reflective and
transparent objects. In comparison with conventional segmentation
approaches, our method can overcome the difficulties produced in
case of reflective and transparent objects and leads to higher perfor-
mances in terms of accuracy and robustness. This efficiency has been
proved through multiple experiments over various objects and under
different type of illumination conditions (indoor and outdoor). This
series of test highlight the advantage given by our approach against
the state-of-the-art methods.

Regarding future work, we intend to use nature illumination
source for the object segmentation. An example is shown in Fig. 8,
where no man-made light source is used. It is a time lapse video of
10 s which requires 4 h of image acquisition. The reflection motion
of the cloud is used to perform a surface segmentation. However, the
faces of the pyramid do not satisfy our constraint of the elementary
continuous surface, thus they are not detected as entire surfaces. One
of possible directions of future research will be to adapt our method
to such surfaces. We are also interested in exploring the evolution of
reflection shape.
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