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A Nonlinear Derivative Scheme Applied
to Edge Detection

Olivier Laligant and Frédéric Truchetet, Member, IEEE

Abstract—This paper presents a nonlinear derivative approach to addressing the problem of discrete edge detection. This edge
detection scheme is based on the nonlinear combination of two polarized derivatives. Its main property is a favorable signal-to-noise
ratio (SN R) at a very low computation cost and without any regularization. A 2D extension of the method is presented and the benefits
of the 2D localization are discussed. The performance of the localization and SN R are compared to that obtained using classical edge
detection schemes. Tests of the regularized versions and a theoretical estimation of the SN R improvement complete this work.

Index Terms—Edge detection, regularization filter, edge localization, edge model, neighbor edge, discrete approach, nonlinear

derivative, noises, performance measure.

1 INTRODUCTION

EDGE detection is one of the oldest topics in image
processing and has been widely studied. Methods of
edge detection have involved derivative masks, primarily
developed in the discrete case, and have been confined to
slightly noisy images [1], [2], [3]. The regularization or
smoothing [4] and optimal approaches of Canny [5] have led
to several efficient continuous operators for noisy and
blurred images [6], [7], [8], [9], [10]. Other advanced methods
that consider the Canny criterion have been developed to
deal with noise, uneven illumination, and image contrast
[11]. In a marginal way, discrete approaches for regulariza-
tion have been developed and have improved results by
considering the discrete nature of the images [12], [13].

In the derivative approach, the Canny criteria show how
performance is linked to the regularization filter. Increasing
regularization improves the SN R at the expense of localiza-
tion. The regularization filter allows modulation of the
balance between these two activities. Thus, linear filtering is
well known in the continuous case and, more recently, in the
discrete case [14]. Nevertheless, while regularization im-
proves SN R and localization against noise, it often disturbs
the geometrical definition and localization of the original
edges in the image. Aside from the influence of noise, two
close edges can be delocalized by the mutual influence
induced by the regularization process [15]. Only specific
regularization functions permit edge detection without
delocalization due to this mutual influence. Unfortunately,
the smoothing ability of these functions is weak (exponen-
tially decreasing around the center of the function). Thus,
linear regularization power is bounded with respect to these
considerations on close edges (and corners).
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Introducing nonlinearity into the global filtering process,
as in noisy edge detection, is a marginal yet efficient method
of obtaining good performance. Generally, nonlinear filter-
ing is used in a preliminary regularization stage. Pitas and
Venetsanopoulos [16] propose a class of nonlinear filters
that rejects additive and impulse noise, while preserving the
edges. More recently, Benazza-Benyahia et al. [17] intro-
duced a nonlinear filter bank leading to a multiresolution
approximation of the signal in which discontinuities are
well preserved. A nonlinear filter for edge enhancement,
using a morphological filter, has been proposed by Schulze
[18]. Here, the author shows that local variation analysis
allows to enhance edges corrupted by multiplicative noise.
Hwang and Haddad [19] present an integrated nonlinear
edge-detection-based denoising scheme. A thresholded
derivative is computed from two half filters (median for
impulse noise, mean for Gaussian noise, and min-max for
uniform noise) and edge detection is used to select the
second filtering stage, i.e., mean for noise or median for
edge points. In this scheme, edge detection could be
considered as a by-product and the optimal performance
is obtained only when the correct first filter is selected
according to the noise statistic. It must also be noted that a
minimum window size of six samples is required.

In this work, we propose to obtain both noise reduction
and edge detection by a one-stage nonlinear derivative
scheme. This scheme, which consists of combining two
polarized differences, yields significant improvements in
SNR without using regularization or increasing the
computational requirements.

Section 2 revisits edge detection using a derivative
approach and discrete edge localization. Section 3 intro-
duces the 1D principle of the method and its 2D extension.
Section 4 focuses on the properties of the proposed scheme
and Section 5 presents the performances of the method on
synthetic and real images. A short study of regularized
versions of the method is also introduced. Section 6 deals
with natural images. Finally, a conclusion and an appendix
complete the paper.

Note that all images (before eventually adding the noise)
in this work are normalized to 1.

Published by the IEEE Computer Society
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Fig. 1. Discrete model for edge-profile and edge-point candidates.

2 DiscReETE EDGE DETECTION AND LOCALIZATION
PROBLEM

2.1 Edge Detection by Derivative Approach

Let us review some of the basics of edge detection using a
derivative approach. The classical continuous model of edge
detection involves the Heaviside function: C(z) = H(z).
Edge detection corresponds to gradient computing and is
achieved by two directional filtering operations, regularized
by a low-pass filter h or not (h = 6) [4]:

——— ([ Ghel@y)\ _ (foxI(ay) _ (9:(z.y)
o) = (%h*nx,y)) - (fyu(a:,y)) - (gm,y))’
(1)

where I(z,y) is the original image and f,(z,y) and f,(z,v)
are the directional regularized detectors. When h(z,y) is
separable, f,(z,y) = f(x)h(y) and f,(z,) = h(z) f(y).

From the gradient images, the gradient modulus and
edge orientation images are calculated, followed by the
local maxima of the image. Finally, a segmentation stage
(for example, a simple thresholding process) leads to the
representation of the edges in the image.

In the optimal approaches developed for the continuous
case, the filters are finally transposed to the discrete case by
a simple sampling; however, sampling the edge model
induces a technical problem for edge localization. This
problem must be considered when evaluating the perfor-
mance of the method [14], [20].

2.2 Discrete Edge Model and Localization

Let us consider high contrast or synthetic images. Accord-
ing to the model of an ideal step edge, two points on both
sides of the transition are edge-point candidates (see Fig. 1).
The ideal edge point would be, in fact, between two pixels
(subpixel detection [13]).

Usually, one maximum is selected from the two points.
Such a condition yields the local maxima extraction:

|gneighb0r in the gradient directi()n| < |g|

< |gneighbor in the inverse gradient direction ‘ .

The role of the asymmetry in this condition is particularly
obvious in the case of synthetic images. Nevertheless, for
noisy images, asymmetry induces an ambivalent local
maxima representation both in synthetic images and in real
sharp images. This effect is particularly observed on
straight lines (see Fig. 8d). Moreover, choosing one
particular edge-point candidate implies that a change in
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Fig. 2. The edge localization varies (yx, _,) according to the sign of the
transition (detector [1 — 1]). Below, we will choose (see Section 3) the
localization represented by the cross.

the sign of the step edge induces a different localization
result (see Fig. 2). In the images, this leads to a poor
localization at the corners of the objects (see image in Fig 5a
and detection in Fig. 5b).

We propose a new scheme to solve these problems of
delocalization and improve the SN R of the edge image. We
use a regular sampling grid and do not consider subpixel
and/or interpolated localization [21].

3 NONLINEAR FILTERING SCHEME FOR EDGE
LOCALIZATION

We first introduce the 1D principle before proposing an
extension to 2D. A comment on the ability of the new scheme,
in terms of localization, will conclude this section. We will
denote the proposed nonlinear filtering scheme by NLFS.

3.1 1D Principle of NLFS
Fig. 3 presents the configuration of two opposite profiles.
We propose to localize the edge point according to the sign
of the slope of the transition. If this slope is positive, the
point will be validated after the transition; if the slope is
negative, it will be validated before.

In this way, we introduce two detector filters, F', and F_,
regularized or not, without 0 at their centers, as

F_(2) = —Fy (7). (2)

Responses are selected using a nonlinear operator 7" as a
threshold. Two signals are obtained: Y,, containing
positive-slope edge points, and Y_, containing negative-
slope edge points:

chosen edge point
y+ +y-)

Fig. 3. NLFS localization for discrete edge detection.
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s[k]

Fig. 4. Signal interpretation: directional signal decompositions.

{n(z) =T(F(2)8(2)), (3)
Y_(2) = —T(—F_(2)5(2)).

Similar definitions have been used by Chen [22] to
characterize local discontinuities. In Fig. 3, the sum of the
two signals y; and y_ corresponds to the illustration.

The original signal s can be seen as two signals s and s_
containing positive (sy[k] = sy[k — 1] + y4[k]) and negative
(s_[k] = s_[k — 1] + y_[k — 1]) variations (Fig. 4). Generally
(except for particular filters like [1 —1]),

k] # 5. [K] + s_[K]. 4)

Another interpretation of this approach could be as
follows: A derivative filtering of the signal is performed in
both directions, from left to right and from right to left. For
each direction, only variations with the same sign are
retained (see Fig. 4). Due to this interpretation, the choice of
the maximum, according to the direction, is always the
same. Let us finally note that, from the perspective of
algorithmic cost and for symmetric negative and positive
filter parts, a single filter is sufficient for memorizing the
operations relating to the pixel closest to the current pixel
(no additional computational cost). Relation 2 can be
written as F_(z) = zF(z) for these filters.

In slightly noisy images, which is a common situation in
real images, the disturbances caused by the noise appear as
isolated peaks. These peaks are detected by vy, and y_ at the
same location and are therefore erased. A “natural” noise
reduction is thus obtained with no penalty in terms of
computational cost (no regularization filter is necessary).

3.2 2D Extension

Extension of this algorithm to 2D or higher dimensions is
achieved in a separable way by introducing the polarized
gradients G} and G_:

From the polarized gradient images, an edge detection
modulus can be obtained as follows (G = Z[g]):

9= \/(gus + 90+ (901 +9,-)" (7)

4 PROPERTIES OF THE BAsic NLFS SCHEME

4.1 Reference Derivative Schemes for Comparison
Since this scheme is nonlinear, some properties will depend
on the choice of F,_. In this paper, we will choose the basic
filter (and for some parts, we will also choose a regulariza-
tion) and compare its properties to the basic definition of
the discrete derivative (no regularization) and the funda-
mental linear scheme used for edge detection. The non-
linear operator 7 is the simple threshold: T'(z) = z if z > 0,
0 elsewhere. We define the following;:

e The NLFS with F,(z) = —271 + 1.

e The classical scheme without a 0 at the center (CFS):
—z~! + 1. This corresponds to the simplest definition
of the discrete derivative.

e Theregularized classical scheme with a 0 at the center
(CFS0): (—z7! 40+ 2)/2. This corresponds to regu-
larized filters, such as the Canny, Canny-Deriche, and
Shen & Castan detectors. Indeed, these filters usually
have 0 at the center. Note that the 0 at the center in the
basic operator already induces a (small) regulariza-
tion of (1 + z)/2. To estimate the components of the
gradient in images, the regularization ((1 + 2)/2) is
performed along the lines (the columns) while the
regularized detection ((—z~!' + 0 + 2)/2) is performed
along the columns (the lines).

4.2 Rotational Invariance of Localization

It is known that an antisymmetric linear (derivative) filter
(no 0 value at the center) gives a shifted pixel localization
and this localization changes depending on edge orienta-
tion. Since the NLFS considers the orientation of the edge
profile (the sign of the variation), it provides univocal
localization; this localization only depends on the profile
(variation). We thus have:

Y(2) = Yi(2) + Y- () (8)
=T[F(2)5(2)] = T[-F-(2)5(2)]. (9)

For a symmetric signal S"(z) = S(z7!), the response is:
Y'(2) =Y (2) + Y (2) (10)
— TIF, (2)57()] - TI-F_(2)$"(2)] (11)
CTF ()8 - TR )SEY] (12)
— V() - Vi (Y, (13)

leading to
Yok = "Y——k

{ yi; =—Yi -k (14)
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Fig. 5. Edge detection (modulus) on a synthetic image: (a) original
image, (b) CFS detection, (c) NLFS, and (d) CFSO (regularized). In (c),
edge points are detected inside the pattern. Edge points are shifted in
(b) and thick in (d), and then are sensitive to noise.

and

Y = —Y-r (15)

While the response is polarized (the sign depends on the
orientation), the localization is unchanged. The 2D exten-
sion inherits this property. Fig. 5¢c demonstrates this result.

This property is still valid for filters that lack symmetry.
This NLFS scheme could be useful for wavelet analysis with
nonlinear phase wavelets.

4.3 Edge Pixel Localization on Synthetic Images

Fig. 5 exemplifies the difficulties of edge localization for a
synthetic image. Notably, the suggested method localizes the
edges inside the frontier of the form. The traditional method,
without regularization (CFS), gives a representation of edges
that are shifted in a particular direction. The regularized
version (with a 0: CFS0) gives thick edges; however, any
presence of noise makes this representation very chaotic.
Changing the localization of edges (to outside the frontier
of the form) is possible with a simple shift of the detectors.
Depending on the selected localization and the object
luminance (and background), the edges will always be
detected inside or outside the form. This is an interesting
property for dimensional control (non-subpixel localiza-
tion), given that the localization is defined in a univocal way.

4.4 Signal-to-Noise Ratio

Since the NLFS is nonlinear, its effect has to be considered
in both the signal and noise. In this section, after some
definitions, the response of the NLFS to the classical edge
model is estimated in the presence of Gaussian white noise.
The estimation of the NLFS effect on the noise then
provides an indication of the theoretical performance of
the NLFS. A complete demonstration of these results is
proposed in the Appendix.

4.4.1 Signals Definition
Let us consider the noisy signal s;:

Sk = A.Hk+nk, (16)

where

Hy=1 ifk>0, (17)

0 elsewhere,

and ny, is an outcome of the stochastic variable N'; denoting a
Gaussian white noise with 0 mean and o standard deviation.

4.4.2 Signal Output

Applying the NLFS to the signal s, with the filter
f+ =[1 — 1], we obtain the response y =y, + y_:

{ Yk = T[sr — sp-1],

Yk = —T[~(sk1 = p)]. (18)

At k = 0 and introducing the noise and the edge model,

Y0 =T[(A+mno) = (0+n_1)],
AR TR A
and then,
Yo = T[A + ng — n_l)] - T[—nl + n(]]. (20)

In the following, the noise level should be weak compared
to the amplitude A (o <« A). If this is not the case, the effect
of the threshold will depend on the amplitude A and
experimental results show that the properties are close to
those of the classical schemes (see Fig. 9). It follows from the
calculations in the Appendix that the energy E{)}} of the
random process ), where the outcomes are vy, is

E{Y% XA 42 o< A (21)

! V

These results show that the NLFS has a tendency to

attenuate the edge response under the influence of noise.
The amplitude of the signal depends on the noise level.

4.4.3 Noise Output
For the noise component, the detection leads to

Yk = Tlsk — 811,
{uw:—ﬂ4%ﬂ—%m (22)
or (for k # {—1,0,1}):
Yt = Ty — 1],
{yak = —T[—(ng1 — np)]. 23)

Developing the different cases (see the Appendix), we
finally obtain:

E{Y,} =0, (24)
B{Y} =10 (25)
~ 0.78507. (26)

This means that, while a derivative operation is performed,
the variance ¢? of the centered noise is reduced to 0.78502
(the noise stays centered).

4.4.4 Theoretical SN R
The theoretical SNR is defined by:

signal power average

SNR = (27)
noise power average
__noisy signal power average — noise power average (28)
B noise power average ’
with the previous results:
A2 — AL .54 20%) — o2
SNR = ( Y. ) (29)

s
il
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(30)

R

4 A? 2 o n 8—m o°

VT A 4 A%)
Seeing the condition for the signal power average evalua-
tion (o < A), we have \%% > 81 2 and

4 A2 2 o
and then
4 A?
SN Ry  — - —5 (32)
A2
~ 127 (33)
4.4.5 Comparison with the Theoretical SN R for the
Classical Scheme
1 A%
SNRcrs.crso = 357 (34)

We can now establish the gain of the basic NLFS scheme in
terms of the SNR:

8 2 o
svR=—(1——=-—] if A
Gsvr = ( 7 A) if 0 < (35)
and the maximum gain:
GSNRmax =— ifox A (36)
~ 2.55. (37)

As NLFS output depends on three samples (sj_1, sk, Sk41), @
fair comparison would be to employ a linear 3-tap filter: this

is the case of CFSO (in 1D).
The basic NLFS offers a good gain in SN R without any

regularization. For noise reduction, the result of the NLFS
scheme is equivalent to the following regularized (linear)
filter (see Fig. 6):

FIk] e gq) = [0.0350  0.0983 0.3778 0.4889
—0.4889  —0.3778 —0.0983 —0.0350]
with:
0
> fH=1, (38)
k=-3
4
> kP =0.785. (39)
k=-3

If we consider the optimal filter for SNR (difference of
boxes, see [5], [14]): the filter

[0.3333 0.3333 0.3333 —0.3333],

the noise is reduced by the coefficient Sy, f[k]* = 0.666.
This means that the minimum width (number of coeffi-
cients) of the regularized equivalent filter is at least 6. Note

—0.3333 —0.3333

Fig. 6. An equivalent linear filter (from the noise reducing point of
view) i, f[]* =0.785. Note the particular normalization here
ch‘s flk] =1 to obtain the amplitude 1 in response to the step
model (in general, h should be normalized to 1 with f=4d).

the particular normalization (Y }_ , f[k] =1 instead of
__ = or this comparison.
5>ty h{k] = 1) for this compari

4.4.6 2D Extension
The energy of the noisy signal for each direction of
detection is

E yQT ~ A2 A, 2 .o+207 ifo< A,
E{ : } A2 A, f 2 if A (40)
{yoy} fa+ o if ok ys
and then
E{Yj} = A* — (A, + A)). —0+4U ifo< A (41)
VT
For the classical schemes:
E{V}}ors = (A2 +20%) + (A2 4 207) (42)
= A%+ 40°, (43)
A 2 52 o2 2 o
2 _ ¥, 2 y 27, 22
E{yO}CFSO - [( 2 ) +22 +52 92 + (7) +22 +§ (44)
A2 o2
— 4 — 45
=T t3 (45)
The SNR is calculated as:
1 A?
N == — 4
SNReps =1, (46)
2
SNRcrso =+-—» (47)
2 A? A+ Ay .
SNRA[LFS—;.;.( - A2 \/_7_70) lf(7'<<147 (48)
and the maximum gains are:
G _8 if A 49
SNRumsjops = 5 LT K4 (49)
4 .
CsN Ry gy = = 1 0 <A (50)
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(@) (b) () (d

Fig. 7. Drawback of edge detection (modulus) on a noisy synthetic
image: (a) original image + Gaussian white noise (0> = 0.0015), (b) CFS
detection, (¢) NLFS, and (d) CFS0. The NLFS does not detect the
vertical white line seen as a noise impulse in 1D. Shifting the detectors
would cause nondetection of the black lines.

Equations (41) and (48) show that the NLFS will attenuate
the detection amplitude for diagonal gradient directions
more than for vertical and horizontal directions. The CFS0
has an improved SNR in comparison with the 1D version
since a regularization is performed on the two directions to
estimate the gradient components.

It can be noted that the number of pixels involved in the
linear and nonlinear schemes is different: 3 for CFS, 8 for
CFS0, and 5 for NLFS. Therefore, a comparison on this basis
is not possible. But (49) and (50) show that the gain of the
nonlinear scheme is better in all cases. In Section 5.5,
experimental results allowing a fair comparison from this
point of view (same neighborhood size) are given.

4.5 Nondetection of Thin Lines

While the NLFS scheme has high localization and good
noise cancellation performance, it suffers from its 1D
definition in the 2D extension. Indeed, positive impulses
are interpreted as noise-inducing. For example, thin, light-
gray edge lines (thickness = 1 pixel) are seen as noise. Fig. 7
shows this phenomenon on a noisy synthetic image.

5 PERFORMANCE OF THE NLFS SCHEME

We first verify the theoretical performance of the algorithm
on synthetic images. A simple criterion is then introduced to
evaluate and compare the performance of the NLFS to real
images. Two regularized versions are then proposed for the
NLFS. These schemes are compared to the classical scheme.

Throughout this section, the regularization filter is
denoted by h (or H(z)) and the NLFS is composed of the
two elementary nonregularized filters: Fi(z) =1—271,
F(z)=z-1.

5.1 Performance on Synthetic Images

5.1.1 1D Localization on Noisy Images

Fig. 8 shows the effect of noise on the localization. Here, the
test image corresponds to the Pratt figure of merit [20]. The
noise induces a chaotic localization of the edge in the 1D-
CFSO case. This phenomenon often also occurs with noisy
real images (processed by CFS0).

Clearly, the 1D NLFS leads to less noisy images than the
1D CFS or 1D CFSO. The next section presents the results
obtained in 2D.

5.1.2 SNR on Noisy Synthetic Images

Considering the synthetic image in Fig. 8, we perform the
edge detection with the classical derivative scheme CFS and

.\1

[Ty ==
| ] L.
B |
"

(@) (b) () (d)

Fig. 8. 1D edge detection (modulus) on a noisy synthetic image:
(a) original image + Gaussian white noise (¢ = 0.0015), (b) CFS
detection, (c) NLFS, and (d) CFSO (no 2D-regularization). The noise
level of the NLFS case is clearly lower than those of other cases. Local
maxima detection gives a badly localized line with CFSO.

the proposed NLFS. In order to measure the performance, a
second edge detection is carried out on the original image
added to a Gaussian white noise image of variance o?. For
low noise levels, the results in Fig. 9 roughly correspond to
the theoretical predictions. For higher levels, as previously
stated, the results will depend on the noise level and the
edge amplitude.

5.2 Performance on Noisy Real Images

5.2.1 Performance Criteria

In this section, we evaluate the performance of the NLFS
scheme compared with the standard derivative CFS. Real
images cannot be directly used for segmentation and then
for performance evaluation; each algorithm produces too
different results for localization and amplitude. In order to
deal with this difficulty, we define a measurement
procedure (summarized in Fig. 10). In order to measure
the performance of a detection algorithm:

e Let there be a real image /.

- A detection is performed with the algorithm that
produces the reference image R.

- A local maxima detection stage leads to the
image R;.

- Finally, a segmented image R; is obtained by a
simple threshold ¢4: if R;(3,7) > tq, Ri(i,5) =1,
else 0.

05 B

0.0001 0.001 0.01 0.1 1

0
1e-05

Fig. 9. Estimated Gengp With respect to the Gaussian noise level
(variance). Comparison with the theoretical gain Ggyg.
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—> Local maxima —>
Threshold
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Threshold

O, O, O

Fig. 10. Procedure for performance evaluation.

e A Gaussian white noise image is generated and
added to image I to obtain I,.

e Steps 1 to 3 are repeated on the new image I, to
produce the outputs O, Oy, and O,.

e A performance criterion C), is defined. Let E be the
set of ny edge points, where R;(i, j) # 0, and Eg be
the complementary set of nz, nonedge points, where

Rt(zmj) =0
Sg — Ng,
/R
C =—__ -/ 51
p Ng/R ’ ( )
where
1 .
So=—.>_ 0(,j)’, (52)
"Er ;'ieEn
1 . .
Nejn =5 D (0.9) = R@.3). (53)
R ijebp

The criterion C), jointly measures the SN R and localization
(due to the maxima detection) of the considered algorithm.
This two-stage procedure allows us to observe the relative
effects of the algorithm on the noisy image. The bias
induced by thresholding the original image is also avoided.
This measure is almost independent of the threshold value.
By comparing the value ratio of C, for the two detection
algorithms, the result is also independent of the noise level
if it is small and sufficient (to be preponderant on the noise
in the original image).

When tested on synthetic images, the criterion leads to
the following result: C,,,,./Cp.s = 2.5 (for small noise
levels), which corresponds to the theoretical ratio in the
SNR. In order to measure the performance of the algo-
rithms on real images, we will assume the following;:

C, = SNR. (54)

5.2.2 Comparison with the Classical Derivative Scheme

Table 1 presents some performance results. The NLFS
clearly outperforms the equivalent (for the filter definition)
linear scheme (see Fig. 11). The gain decreases for low and
high noise levels. For low noise levels, the decay in the
performance ratio is due to the criterion definition (the
relative added noise level becomes too small). The second
case (high noise levels) confirms the theoretical and
experimental results on the synthetic images. The results

TABLE 1
Performance of the CFS and NLFS on the Image House
o? 0.0001 0.0005 0.001 0.005 0.01 0.05
Crops 207 38 18 3.2 1.6 0.34
Pairs 317 71 36 7.0 3.5 071
ratio 1.5 1.9 2.0 2.2 22 21

These results (ratio) do not change for a threshold in the range
[0.08;0.16]. Beyond this range, the number of edge points becomes
insufficient. As the threshold decreases below 0.08, the performance
ratio increases but the resulting images become very noisy.

(ratio) do not change for a threshold in the range [0.08;0.16]
for the House image. Beyond this range, the number of edge
points becomes insufficient. As the threshold decreases
below 0.08, the performance ratio increases but the resulting
images become very noisy. These remarks remain valid for
all ensuing experiments.

5.3 Performance with Basic Regularization
(Smoothing) on Noisy Real Images

In this section, we define regularized versions of the NLFS

and compare their performance to the basic regularization

(corresponding to the classical edge detection scheme)

carried out by the filter [1 1], even though the main interest

of the NLFS is the gain without using regularization.

5.3.1 A Simplified Real Edge Model

In real images, the projection of a step edge on the sensor
does not correspond well to the Heaviside function [8], [23].
The integration pixel surface induces an edge profile C, that
we will model as follows:

0 if k<0,
Colk)={ (05—2).A ifk=0, (55)
A if k> 0,

with A representing the edge amplitude and « (—0.5 <
2 < 0.5) the original localization of the projected profile. For
a free-noise signal, detection by the NLFS scheme gives:
Yo = (05 — QZ)A,
{ = (0.5+x).A. (56)
In this work, we used the detection filter (2! —271)/2
(CFS0) involving the edge detector 1 — 2z~ and the basic
regularization filter H(z) = (1 + z)/2; therefore, a general
definition of the detection filter D(z) is given by (H being
the regularization term)
D(z) = (1 —2z"").H(2). (57)
The corresponding detection (with H(z) = (1 + 2)/2) is

Yy-1 = (05 - I)A/Z,
Yo = A/27
y = (0.5+2x).A/2.

(58)

5.3.2 Basic Regularization for the NLFS

Equation (56) shows the typical response of the NLFS
scheme “inside” (for the chosen definition of the NLFS) the
edge profile (yy and y;), while the CFS0 produces a centered
response (y_1, yo, and y;). In order to induce an equivalent
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(@)

©

Fig. 11. House image + Gaussian noise o> = 0.005 (a). Comparison between CFS and NLFS: the gradient modulus after local maxima and

thresholding (0.08). (b) CFS and (c) NLFS.

regularization with the NLFS, the definition of the basic
regularization filters (h, and h_) has to be adapted to the
components y; and y_:

PRI (59)
B-G)=——7

with the two elementary nonregularized filters F(z) =
1—271 F (2) =2z—1, and then

{m(z) — (1+2)/2,

Ho(2) = (1422 (60)

The algorithm dealing with the image / is summarized below:

e smooth image / with [/, and H_ along the lines and
columns to obtain I, and I_;

e perform the 2D component detection G, G, and
G,—, G,— on I and I_, respectively;

e calculate G, =G,y +G,—, G, =Gy + G, as pre-
viously and, finally, |g|] and arg[g].

5.3.3 A Second Method of Regularization with the NLFS
Since NLFS is nonlinear, changing the order of the operators
will theoretically change the results. A second version for
NLEFS can be defined (NLFS II). After the detection using
the nonregularized filters Fy and F_, a regularization is
performed. The regularization is unique, as illustrated in
Fig. 12. This means that the regularization filter should be
symmetrical for images (2D or more); however, a shifted
edge representation (as in the simple scheme [I — 1]) can
be obtained with shifted filters (like [1 1]/2). The smoothing
“power” of this filter is equal to 0.5>+ 0.5 =0.5. An

[T ==——=== | Detection ( NLFsT )
Smoothing -
4P| Detection I—PI Smoothing |—> ( NLFsH )

Fig. 12. The two versions for NLFS with regularization.

equivalent filter (from the smoothing point of view) bz! +
a+ bz~ can be defined by:

norm,

a+2b=1
{ smoothing "power,” (61)

a?+20¥ =05

leading to H(z) = 1/62' +2/3+1/62"".
The number of pixels involved in these nonlinear
regularized schemes is 12.

5.3.4 Comparison of CFSO, NLFS I, and NLFS I

Table 2 presents the results we obtained on the synthetic
images. Table 3 presents the performance of the standard
NLEFS and the nonlinear regularized schemes referenced to
the classic scheme [1 — 1]. The CFS0 outperforms the NLFS
on segmented real images. This is mainly due to the
expanse of the profile (see the edge model in (55)) being
better detected in the regularization case; however, the
NLFS is similar to the CFSO in terms of SNR on the
detection images (no local maxima). The regularized
schemes NLFS I and NLFS II generally outperform the
CFS0, regardless of the noise level and the threshold (see
Fig. 13). For weak noise, the methods perform similarly, but
NLFS I and NLFS 1II are slightly better. In general, the
attenuation tendency on the edge amplitude is weak and
can explain the small difference in performance between
CFSO and NLFS I-NLFS II in some cases for very low noise
levels. The fine details are generally detected better with the
NLFS 11, seeing as the regularization is carried out after the
derivative operations.

Compared to the nonregularization versions, the perfor-
mances do not improve proportionally to the regularization
“power” (1/ S h[k]*). According to some experiments, the

TABLE 2
Performance on Synthetic Images
(Noise Level <« Edge Amplitude)

Opschcme CFS
H(z) NLFS CFSO NLFSIT NLES II
T+2)/2 25 20 23 3.0
1/627+2/3+1/62 1| 25 32 54 54

CFS0: D(z) = (1 — = ). H(z).
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TABLE 3
Performance of the Standard NLFS and the Regularized
Schemes Referenced to the Classic Scheme [1 —1]

CPschemc CFS
a? H(2) NLFS CFSO NLFST NLFS II
0.0005 (1+2)/2 1.9 54 5.5 7.3
0.0005 1/62'+2/3+1/6z"1 1.9 49 6.3 6.8
0.005 (1+2)/2 22 53 5.7 6.9
0.005 1/62"+2/3+1/62"1| 22 4.8 7.3 7.0

Parameters: threshold = 0.08. The results depend on the parameters
but the performance of the regularized schemes NLFS I and NLFS Il is
better than or equivalent to that of the CFSO. The performance of these
methods relative to the classical regularized scheme CFSO improves as
the noise level increases. CFSO0: D(z) = (1 — z71).H(=2).

difference in performance between CFS0 and NLFS I-NLFS II
seems to decrease with stronger regularization.

The best effect in noise reduction is obtained with local
compensation: the same isolated peak detected by y. and
y— with the same localization. If regularization is intro-
duced, the compensation is attenuated by averaging this
detection over the neighborhood. This means that the
NLFS I technique contradicts the principle holding in linear
optimal detection filter and leading to the best SNR
(difference of boxes). The compensation introduced by the
NLFS II becomes negligible as regularization increases.

In conclusion, the performance of the NLFS I and
NLFS 1II correlates with the energy of the regularized filter
around its center.

5.4 Non-Gaussian Noises (No Regularization)

5.4.1 Multiplicative Noise
The multiplicative noise is defined as

J=IT+nxI, (62)

where I is the original image and 7 is uniformly distributed
random noise with a mean of 0 and a variance v. The
proposed scheme is still efficient for the derivation of a
multiplicative noisy signal, while reducing the noise level
(see Fig. 14). The performances (Cp,,,,/Cp..,) are very
similar to the Gaussian noise case; this ratio is about 2 for
reasonable noise levels and more for high levels of noise.

Fig. 13. Regularized schemes: the gradient modulus after local maxima and thresholding (0.08).
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5.4.2 Salt Noise

The NLES is particularly efficient (see Fig. 15) for this type
of noise since the underlying principle of the NLFS is
designed to remove such isolated noise outcomes. The
C, criteria are not relevant for this particular noise
(“binary” noise). Instead of C),, the percentage of false
detection P and the percentage of nondetected points ND
are defined using the same procedure:

1 .
ND=—. %" 0,(i,j), (63)
B i ckn
1
P=—:. %" 0:ij), (64)
"Er ;icEy

where np, is the number of edge points in the segmented
reference image R; and O; is the segmented noisy image.
Table 4 presents rough values of the gain in ND and P with
respect to the classical derivative method. The range values
for the threshold and the noise are set to obtain stable
results with a reasonable number of edge points and noise
points. The efficiency of the NLFS does not change outside
this range.

5.5 Other Comparisons

All tests in this section are done on the House image and on
a synthetic image containing simple patterns. As pre-
viously, ND and P are the performance indexes.

5.5.1 Schemes Involving the Same Neighborhood Size
To have a fair comparison between methods involving the
same neighborhood size (5), we compare NLFS (S = 5) with
a 2D CFS0O without regularization in the direction perpen-
dicular to the detection (CFS05 with S = 5). Fig. 16a shows
that for Gaussian noise, NLFS and CFS05 are equivalent,
independent of the threshold, while both methods outper-
form CFS. This conclusion remains valid for any noise level.
Fig. 16b shows that for salt noise, the performance of NLFS
is superior to CFS05. As before, Fig. 16b illustrates that the
behavior of the methods is similar whatever the threshold.

(c)
(a) CFSO0, (b) NLFS I, and (c) NLFS II.

House image + Gaussian noise o2 = 0.005, regularization filter H(z) = 1/62' +2/3 + 1/62L.



LALIGANT AND TRUCHETET: A NONLINEAR DERIVATIVE SCHEME APPLIED TO EDGE DETECTION 251

(@) (b) (©)

Fig. 14. Speckle (multiplicative) noise: edge detection + segmentation (local maxima + threshold 0.08) on the House noisy image: (a) original
image + speckle noise (v = 0.001), (b) CFS, and (c) NLFS detection.

(@ (b) (©)
Fig. 15. Salt noise: edge detection + segmentation (local maxima + threshold 0.08) on the House noisy image: (a) original image + salt noise
(density = 0.1), (b) CFS, and (c) NLFS detection.

TABLE 4
Performance of the NLFS Scheme in Terms of (Ratio of)
Percentage of False Detection P and Percentage of Nondetected Points N D

noise density threshold ‘ NDCFS/NDNLFS PCFS/PNLFS

[0.01;0.1]  [0.08;0.16] | ~5 ~5
220 T T T T 200 T T T T T T T
CFS05 - X, CFS05 ~—x-—
200 P NLFS % 180 - NLFS % |
AN ) Sy
180 g 160 ! g
CFs :
160 g 140 4 g
td=1.6 i
140 - g 120 M g
o X,
o .
a 4 o 100 [ ) q
= "X CFS05
\\ i s “~ ,
“ 8
B 60 - o e 7
~ \{ CFS
. g 40 - . .
e .
~.
K- 20 ~ i
- td = 1.6NLFS T td=00
By, td =002
20 . . . , 0 | | . . \ \ . .
0.06 0.08 01 0.12 0.14 0.16 2 4 6 8 10 12 14 16 18 20
td ND
@ (b)

Fig. 16. (a) Performance (measured by ND + P) of the methods with respect to the threshold (¢;) for the Gaussian noise (House image,
o? = 0.0005). (b) Performance of the methods measured by ND and P for the salt noise (House image, density = 0.05) for various thresholds .

In the case of synthetic images containing ideal edges, 0.0005 and a threshold t; = 0.1, we measured (ND;P):
even for Gaussian noise, NLFS greatly outperforms CFS05  (5.9;116)cpg, (44;59) 050 (0.29:4.2) v g, which illustrates

and CFS. For example, with a Gaussian noise level o2 = the good localization ability of NLFS.
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TABLE 5
Performance (N D, P) of Some Nonlinear Edge Detection Schemes
(Image House, t; = 0.1, o> = 0.0005 for the Gaussian Noise, Density = 0.05 for the Salt Noise

method Median+CFS | Median+CFS05 | Hwang-Haddad | NLFS | Median+NLFS
neighborhood size 7 9 11 5 9
gaussian ND 15 17 21 16 15
noise P 19 16 29 28 17
salt ND 5.8 6.9 6.7 3.8 6.1
noise P 14 17 16 7.9 9.2

(@) (b)

Fig. 17. The House image: the gradient modulus after local maxima and thresholding (0.08). (a) Original image, (b) CFS detection, (c) NLFS

detection, and (d) CFSO reference detection (regularized).

5.5.2 Other Nonlinear Approaches

In this section, we propose to compare NLFS to other
nonlinear methods. As stated in Section 1, very few
nonlinear methods are specifically designed for edge
detection. Considering only the methods comparable in
complexity, we chose to compare NLFS with the scheme
proposed by Hwang and Haddad [19] and with the
commonly used technique that involves median filter
followed by derivative: Median + CFS, Median + CFS05,
and Median 4+ NLFS. Table 5 presents the results obtained
on the House image with Gaussian and salt noise. For the
Gaussian noise, Median+CFS, Median+CFS05, and Med-
ian+NLFS produce the same results, while the (median-
based version of) Hwang-Haddad method is not adapted to
Gaussian noise. NLFS result is a slightly worse than the best
methods (see Table 5) but it is the least complex scheme
involving a 5-pixel neighborhood. However, once more,
NLFS shows its efficiency when the image is corrupted by
salt noise.

6 NATURAL IMAGES

6.1 Sharp Images

The CFSO on an original image is equivalent to the CFS
applied on the original image convolved by the mask
[1 1;1 1]/4. Thus, the CFSO corresponds to the narrowest
filter among the family of derivative filters (Canny, Canny-
Deriche, Shen and Castan, and Demigny, ...). This means
that the CFS0 can be used for comparisons on sharp images.
Another asymmetric regularization filter can be used to
further smooth the derivative filter. Finally, the performance
of NLFS against other kinds of noise can be evaluated.

Fig. 17 presents the detection (no threshold) on the
House image. The detection by the NLFS can be compared
to the CFS result and to the reference image obtained by
CFS0. The edges are well detected using the NLFS except

for the very thin edges (width 1 pixel). The roof is better
detected with the NLFS than with the simple derivative
scheme CFS.

Fig. 18 contains edges and thin textures. While the noise is
slightly reduced, the textures are differently detected with
NLFS than with linear approaches. Due to the localization
inside the lighter object, patterns can be better isolated. Fig. 19
shows an example where the patterns seem easier to identify
or separate. Nevertheless, some vertical thin lines are
underdetected, as on the right of the visible hand. Fig 20
shows the efficiency of the NLFS scheme in removing noise
similar to salt noise. Fig. 21 depicts an original image and its
hand segmentation from the Berkeley database [24]. The
results of the derivative schemes can be compared to this
human reference. In the example, the tendency of the NLFS to
underdetect thin edges (width of 1 pixel) can be considered to
be a good property for human segmentation.

6.2 Degraded Images

In general, as confirmed by the results in the previous
section, the simple derivative schemes work well on sharp
images with homogeneous patterns (in luminance). Fig. 22
depicts the improvement in detection of the NLFS compared
to the classical derivative method. It should be noted that the
white lines of the ground are represented by one pixel in the
NLFS detection. The result using CFS0 shows that regular-
ization is needed to improve the detection of the object in the
background. Two examples of regularization are carried out
and the results are presented in Figs. 23 and 24. The
regularization H(z) =Y, e *2F is selected to avoid
delocalization due to mutual influence [15]. This figure
shows that regularization does not delocalize the edges in
any of the schemes. Due to the equivalent regularization
power of the NLFS schemes, the images created by the NLFS
schemes contain slightly fewer noise points.
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(a) (b)

© (d)

Fig. 18. Segmentation of the Barbara image (threshold 0.04). (a) Original image, (b) CFS detection, (c) NLFS detection, and (d) CFSO reference

detection (regularized).

7 CONCLUSION

A new nonlinear scheme allowing the detection and
univocal localization of edges with noise cancellation has
been proposed. The noise cancellation effect is a beneficial
property for an edge detector, since such a result is
generally only obtained by linear regularization. It was
demonstrated in [15] that this regularization generally
induces delocalization for neighboring edges (a regular-
ization filter should have a profile of e to avoid
delocalization by mutual influence). The new scheme
(NLFS) combines good localization, SNR improvement,
robustness against mutual-edge influence, and a very low
computational cost (similar to the simple discrete deriva-
tive method).

We compared the proposed scheme with the classical
derivative scheme and the narrowest regularization scheme
corresponding to the classical filters (such as the Canny,
Canny-Deriche, Shen and Castan methods, ...). Without
regularization, this very simple scheme can match the
performance of regularized edge detectors for sharp
images. The gain brought by this scheme can attain 4dB
and the noise in the edge image is lower than that of the
original image. Moreover, the edge is systematically
localized inside the form (or outside), and this deterministic
property can be useful for dimensional measurement and
pattern recognition (thin textures and lines). A comparison
of NLFS to other simple nonlinear edge detection schemes
illustrates its simplicity and efficiency.

The method cannot remove the salt-and-pepper noise in
the same operation. However, the scheme is efficient for
many kinds of noise, including additive Gaussian white

@) (b) (©) (d

Fig. 19. Zoom-in of the middle-left part of Fig. 18. (a) Original image,
(b) CFS detection, (c) NLFS detection, and (d) CFSO reference
detection (regularized).

noise, salt or pepper noise, multiplicative noise, or any
combination of these.

Since the scheme is fundamentally 1D, one-pixel width
(along vertical or horizontal direction) lines with positive
and negative contrast cannot be detected in the same
operation. Depending on the application, the nondetection
of these thin lines (1 pixel) can be seen as a positive
property (in the case of human detection, for example) or as
a problem (in detecting targets for robotic navigation).
However, thin lines in 1D more often correspond to noise
than to signal. These specific types of information should be
detected by model-adapted detectors (see, for example, [6]).

The NLFS scheme can incorporate regularization in two
ways, since it is nonlinear (NLFS and NLFS II). As in the
classical scheme, this regularization can be chosen to avoid
delocalization by mutual influence. More investigations are
necessary, but it appears that NLFS I is more appropriate to
Gaussian-like noise and NLFS Il is very efficient for filtering
impulse noise. In general, the gain brought by NLFS
decreases as the regularization increases since the NLFS
principle is based on local (around the center of the
detection) compensation of the noise detection.

Future work will focus on the extension of this scheme
and the definition of other elementary filters (F and F.:
asymmetric and/or directly defined in 2D) to improve the
performance of the NLFS.

APPENDIX

A.1 Signal-to-Noise Ratio

A.1.1 Signal Definition

Let us consider the noisy signal s, = A.H}, + nj, where Hj, =
1 if >0, 0 elsewhere, and n, is an outcome of the
stochastic variable N, denoting a Gaussian white noise of 0
mean and standard deviation o.

A.1.2 Signal Output

Applying the NLFS on the signal s, with the filter
f+ =[1 — 1], we obtain the response y = y; + y_:

{ Yk = Tsp — sp—1]

Y = =T~ (5141 — 1] (65)

at k = 0 and introducing the noise and the edge model,
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(@) (b) (©) (d)

Fig. 20. Segmentation of the brick wall image (Brodatz collection, image D25, threshold 0.04). (a) Original image, (b) CFS detection, (c) NLFS
detection, and (d) CFSO reference detection (regularized).

Fig. 21. An image and its hand segmentation from the Berkeley database [24]. (a) Original image, (b) CFS detection, (c) NLFS detection, and
(d) hand segmentation. The underdetection of thin lines by the NLFS agrees with the hand detection.

L ; : S <
pe o ——
(@) (b) (c) (d)

Fig. 22. The “depth” image. Detection + modulus threshold 0.03. (a) Original image, (b) CFS detection, (c) NLFS detection, and (d) CFSO0 detection
(regularized).

{ Yi0=T[(A+n9) — (0+n-1)], (66) the amplitude A (0 < A). If it is not the case, the effect of the
y-o0 = ~T[=((A+m) = (A+m))], threshold will depend on the amplitude A: Experimental

results show that the properties are close to the classical
and then yo =T[A+ng—n_1)] —T[—n1 +ng|. In the fol- scheme ones. Now yo~ A+ng—n_y — T[—n1 + ng), which
lowing, the noise level is supposed to be weak compared to  can be written as
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(a) (b) (©) (d)

Fig. 23. The “depth” image. Detection + modulus threshold 0.01 (low threshold to observe the noise reduction). (a) Original image, (b) NLFS |
detection, (c) NLFS Il detection, and (d) CFS regularized detection. H(z) = 1/62' +2/3 4+ 1/627".

]

=
B

(@) (b) (©) (d)

Fig. 24. The “depth” image. Detection + modulus threshold 0.006 (low threshold to observe the noise reduction). (a) Original image, (b) NLFS |
detection, (c) NLFS Il detection, and (d) CFS regularized detection. H(z) = 22,}76 P

y(]:A_A'_n] —n_q if ny < ng, = h
{ ndem o < o) = P(m). /  Pla)ing (73)
. . i 1 j 1 \/i
The energy of the noisy signal )y, a random process, is o et e\ m)| ™
ovV2m 2 20

given by

Defining the variable M as M =N — N _; | n; <N, the

21 _ 2
E{Ysy = B{(A+ N1 = N1)" [ <Noj (68) density probability Py is:

-I—E{(A-‘r./\f(] —Nfl)Q | no SNl}v

Py (Tfl) = /:x P(nl, np < ./\/’(]).P(nl — Tfll)dnl (75)

seeing N1, N, N_; are random variables:
o0

E{y(%} = AQ =+ 2A(E{(N1 7./\[,1) | ny < No}

= /DO P(ny).P(ny —m)dny /OC P(ng)dny. (76)
+ E{(No = N_1) [ no < N1}) -

[e's} ny

(69)

+ E{(Nl —./\/‘71)2 | ny < No} + E{(N() —N71)2|7L() § N1} We can deduce:

(70)
o 1
E{(N1—=N_1) | N1 <ny}= / mPy(m)dm = W
Considering the terms of the first case (n; —n_;), we have: —0 VT
(77)
1 -2
P(n_y) = €2’ (71)  and
o\ 2w

o0

2 _ 2 _ 9
Plng.ny < No) = P(n) Plny < o) (72) E{(N1—=N_1)" | N1 <n}= [x m?Py(m)dm = o°. (78)
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The second case (ny — n_1) is identical. It follows that

. 2 .
E{yg} :AZ—A.%.J+202 if o < A. (79)
A.1.3 Noise Output
For the noise component, the detection leads to:
Yo = Tlsi — sp-1]
80
{yak = —T[—(sk+1 — 1)) (80)
or (k# {-1,0,1}):
Yok = Ty — nyp—1]
81
{y,,k = T (g1 — ). (81)

Developing the different cases, we obtain for y; =
Yok T Y-kt

Yk =N — N1 ifng >y and ng > nga, ()
Yp = Mg — Mg 1 if ng >np1 and  ny <py, (b)
Y =1 — g if g <mgoyand ng > g, ()
yr =0 if ngy <my—1 and np <ngpp. (d)
(82)

We deduce the corresponding density probabilities:

Puly) = /jo Py(z)dx [/jr Pri1(u) P (u — yo)du

9] o0

+ /:O Pri1(u)Pp oy (u — y<0)du}

— /_OO Py(z)dx /_T B (w) Py (u — [y])du

o0 o0

Py(y) = /_OO Py (w)dz /_T Pr(u)Pp—1(u — y)du

o0 o0

P(y) = / " P(@)de / " P () Pulut — y)du

o0

The two moments are then calculated by: E{Y,} =
S yP(y)dy and E{Y?} = [~ 1*P(y)dy. We obtain the
following results:

Yk a b c
1 1
E{Yi} | 0 579 —550
E{v? %02 %02 %02

Finally, E{Y;} = 0 and E{Y}?} = 20’ ~ 0.7850>. This means
that, while a derivative operation is performed, the centered
noise of variance o? is reduced to a variance 0.7850°
(centered noise).

A.1.4 Theoretical SN R
The theoretical SN R is defined by:

SNR noisy signal power average — mnoise power average

noise power average

(83)

with the previous results:

(A2 —A.\/l;.a+202) —%0°

SNR = — (84)
ZU
4 A2 2 o 8—7 o?

Seeing the condition for the signal power average evalua-

tion (0 <« A), we have \%% > 8%’7.;’1—22 and:

4 A? 2 o
SNRN;.?O—\/—%.Z), (86)
and then SN R« ~ %.‘;‘—f ~ 1.272‘—;.
A.1.5 Comparison with the Theoretical SN R for the
Classical Scheme
1 A?
SNRcrs.crso = 357 (87)

We can now establish the gain of the basic NLFS scheme in
SNR:

8 2 o .
GSNR = ; (1 — ﬁA) ifo< A (88)
and the maximum gain Ggyg,, =5~ 2.55 if 0 < A.

A.2 Matlab-Octave-... Code of NLFS

Yom == mmm e algo. NLFS ------------

% input I: image, size M x N

% outputs gm, gh, gv: gradient modulus and
components, size M x N

function [gm, gh, gv] = algoNLFS(I) ;

% no optimization

dph = threshold(conv2 (I, [01 -1], ‘same’), 0);
dnh = -threshold(-conv2 (I, [1 -10], "same’),
0);
gh = dph + dnh; % horizontal component of the
gradient
dpv = threshold(conv2 (I, [0; 1; -1], ’'same’),
0);
dnv = -threshold(-conv2 (I, [1; -1; 0], ’"same’),
0);
gv = dpv + dnv; % vertical component of the
gradient
gm = sgrt (gh.*gh + gv.*gv) ;
A T end algo. NLFS - - - - - - - - -
- - -=-=-=-=-=--=-- threshold - - - - - - - - - -
% s: signal or image, T: threshold (0 in this
work)
function st = threshold (s, T)
for i=1l:size(s,1)
for j=l:size(s,2)
if (s(i,J) <=t) st(di, =0;

else
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end
end
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