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Abstract. In the present work, a novel signal denoising technique for
piecewise constant or linear signals is presented termed as “signal split.”
The proposed method separates the sharp edges or transitions from the
noise elements by splitting the signal into different parts. Unlike many
noise removal techniques, the method works only in the nonorthogonal
domain. The new method utilizes Stein unbiased risk estimate (SURE) to
split the signal, Lipschitz exponents to identify noise elements, and a poly-
nomial fitting approach for the sub signal reconstruction. At the final stage,
merging of all parts yield in the fully denoised signal at a very low com-
putational cost. Statistical results are quite promising and performs better
than the conventional shrinkage methods in the case of different types
of noise, i.e., speckle, Poisson, and white Gaussian noise. The method
has been compared with the state of the art SURE-linear expansion of
thresholds denoising technique as well and performs equally well. The
method has been extended to the multisplitting approach to identify small
edges which are difficult to identify due to the mutual influence of their ad-
jacent strong edges. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE).
[DOI: 10.1117/1.3645091]
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1 Introduction
In the previous 2 decades, wavelet transform has received sig-
nificant attention as a tool to extract noise elements from the
signals. In particular, the wavelet transform modulus maxima
(WTMM) approach proposed by Mallat et al. has received
the most attention due to its property of working in the con-
tinuous and nonorthogonal domain.1, 2 Several approaches
have been proposed in the past to extract singular points
from the signal by using WTMM,3–10 e.g., Hsung et al. re-
placed the maxima detection with the sum of the modulus
of its wavelet coefficients inside the corresponding cones
of influence.7 More recently, Ordenovic et al. used WTMM
to estimate the holder component to identify the glitches
present in the signal.8 Similarly, Brunia and Vitulanua used
a model-based approach to identify these singular points in a
signal.10

Another domain of denoising techniques works on the
principle of shrinkage.11, 12 The shrinkage method uses a
nonlinear thresholding approach to shrink the orthogonal
wavelet coefficients as a denoising tool. This method relies
on the idea that the energy of the function is often concen-
trated in a few wavelet coefficients while the energy of the
noise is spread over all coefficients. Therefore, by selecting
a suitable threshold value it is possible to reduce a signif-
icant amount of noise elements by using nonlinear thresh-
olding in the wavelet domain.12 However, the denoised sig-
nal in this case may contain spurious oscillations due to the
translation variant property of the discrete wavelet transform.
Afterwards, several approaches were proposed to overcome
these problems of shrinkage, but so far none of them guar-
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antees the preservation of edges or sharp variations, possibly
due to their working in an orthogonal basis.13–19 A brief
survey of some of these approaches is given by Fodor and
Kamath.17

The main motivation of the current work is to overcome
the problems existing in the previously proposed methods
and to preserve the transitions without introducing any oscil-
lations at a relatively lower computational cost. The proposed
approach segments the signal based on the sharpness of its
transitions. This segmentation is performed by Stein’s unbi-
ased risk estimate (SURE)-based nonlinear thresholding of
WTMM. Once the signal has been split into different subsig-
nals, Lipschitz exponents were computed for all the signif-
icant transitions present inside each subsignal individually.
These Lipschitz exponents permit to separate the regular or
smooth points from the noise elements. A polynomial func-
tion is then optimized between all regular points using the
minimization approach to reconstruct each subsignal indi-
vidually. At the end, all subsignals were merged together to
reconstruct denoised signal.

This paper is organized as follows. Section 2 reviews
the wavelet transform modulus maxima approach and pro-
poses a splitting method. Section 3 deals with the noise re-
moval and reconstruction for subsignals. Results are given in
Sec. 4. Section 5 presents an application and Sec. 6 concludes
the work with some future prospects.

1.1 Principle of the SSplit Method
The proposed method can be divided into two main stages:
signal splitting and reconstruction.

Let us suppose we have a noisy function Y such that:

Y = F(ti ) + εi , where i = 1, . . . , N , (1)
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Fig. 1 (a) Block function and (b) block function with Gaussian white, with rescaling to have signal to noise ration, SD(f )/σ = 7.

F(ti ) is the deterministic function with ti = (i − 1)/N , N
is the total number of samples, and εi is white Gaussian
noise N (0, σ 2). The aim of the current work is to estimate
the function F with the minimum mean square error (MSE).
The MSE of an estimator F̂ with respect to the estimated
parameter F is defined as:

MSE = 1
N

||F̂ − F ||2 = 1
N

N−1∑

i=0

(F̂i − F)2. (2)

In order to estimate the function F , the method splits the
function Y into its subsets in spatial domain on the basis of
the sharpness of transitions or edges such that:

Y ⊇ Yi=1,2...J . (3)

Y denotes the set of all samples and each subset Yi , and i
= 1, . . . , J contains Ki adjacent samples yi,l with
l ε 1, . . . Ki . J is the total number of subset and Ki is the
length of the respective subset. Piecewise analysis has been
performed on each subset of the function Y individually by
following the algorithm as follows:

1. Initially, the selection of the subsets are defined on
the basis of SURE-based nonlinear thresholding of
WTMM .

2. Lipschitz exponents computed from each subset re-
sult in identifying the regular or smooth points in the
respective subset.

3. The polynomial function is then optimized between
all smooth points to restore each subset individually.

4. At the end, all subsets were merged together to recon-
struct the fully denoised signal.

Experimental results will be presented on the synthetic
Block function proposed by Donoho (Fig. 1). In Sec. 2, a
brief explanation of the signal splitting approach is given
and Sec. 3 explains the reconstruction technique.

2 Signal Splitting Approach
Let us consider the step function given in Fig. 2. the Step
function is considered to be discontinuous and hence non-
differentiable. During smoothing, it is of extreme importance
not only to identify this property of step function but also to
preserve the discontinuity of the respective edge point. These

Fig. 2 Synthetic step signal.
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Fig. 3 Piecewise discontinuous signal.

edges actually separate two independent parts of the signal
which are disconnected from each other at this point. Several
denoising algorithms cannot preserve this property and end
up in the smoothing of this point. In order to illustrate this
phenomenon, we have added white Gaussian noise to the
signal as shown in Fig. 2. Denoising with the shrinkage ap-
proach results in smoothing not only the noisy region but also
the sharp transition. Hence, after denoising it is not possible
to identify that the transition was actually a discontinuous
point of the signal.

Similarly, Fig. 3 presents another example of such cases:
the piecewise signal with discontinuous transition in the mid-
dle. Smoothing with the shrinkage approach results in remov-
ing the noise elements but the edge has also been smoothed
and, as a result, it is not possible to identify any discontinu-
ous point present inside the signal, while these discontinuous
points are considered as a disconnection between two parts
of the signal. It is possible that the two parts are independent
of each other. In this work we propose to study each dis-
connected part individually. The complete denoising on each
part is performed individually and at the end all disconnected
parts were merged together to reconstruct the complete de-
noised signal.

Wavelet transform has been used as a significant tool to
extract such discontinuity at coarser scales. It has been proved
that the noise elements gradually disappear on coarser scales
and only significant transitions are left inside the signal. We
had utilized this property of wavelet transform to identify the
significant transitions and possible split points. The splitting
of the signal involves two steps:

1. Multiscale analysis and extraction of modulus
maxima.

2. Stein’s unbiased estimate of risk-based thresholding.

In Sec. 2.1, we will present the brief study of the multiscale
analysis and thresholding-based technique to split the signal
into subsets.

2.1 Multiscale Analysis
In order to split the signal, continuous wavelet transform-
based multiscale analysis has been applied on a signal y(t)
to compute the modulus maxima by using the integrable
function:1, 2

W T (u, s) = 1√
s

∫ +∞

−∞
y(t)#∗

[
(t − u)

s

]
dt, (4)

where W T (u, s) is the wavelet coefficient of the function
y(t), #(t) is the analyzing wavelet, s(> 0) is the scale pa-
rameter, and u is the position parameter. While computing
the WTMM, it is not guaranteed that the modulus maxima
located at (u0, s0) will belong to a maxima line that propa-
gates toward a finer line. Mallat highlighted that when the
scale decreases, W f (u, s) may have no more maxima in the
neighborhood of u = u0.1 Afterwards, he proved by using
the heat diffusion equation that this lack of maxima would
never be the case if wavelet function is the derivative of a
Gaussian function. Therefore, the derivative of a Gaussian
function is most often used to guarantee the propagation of
maxima lines on finer scales.1 The Gaussian function [θ (t)]
has an important property of continuous differentiability as
well, which makes this function suitable for the analysis of
most types of signals.

2.1.1 Modulus maxima extraction
Continuous wavelet transform-based multiscale analysis re-
sults in the highlighting of modulus maxima across suc-
cessive scales. These modulus maxima are defined as any
point (u0, s0) such that |W f (u, s0)| is locally maximum at
u = u0 and correspond to the significant edges and transi-
tions present in the signal. Figure 4 shows the computation
of modulus maxima across four different scales. It can be
observed from the figure that the strong peaks preserved
their maxima even on coarser scales. However, the maxima
corresponding to the noise elements gradually disappear on
coarser scales. It is therefore possible to locate the position
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Fig. 4 Modulus maxima of the synthetic block signal on multiscale analysis with ψ = −θ ′, where θ is a Gaussian function. (a)–(d) correspond to
the analysis on 1st, 3rd, 6th, and 10th scale.

of these singularities by tracing their corresponding maxima
from coarser scales to finer scale.

2.2 Stein Unbiased Estimate of Risk-Based
Thresholding for Signal Splitting

In order to select the optimum threshold criteria for making
the subsets, the level dependent thresholds are derived from
modulus maxima by regarding the different scale levels as in-
dependent multivariate normal estimation problems. SURE
gives an estimate of the risk for a particular threshold value
t ; minimizing this in t gives a selection of the threshold level
for that level j ( j = 1, 2 . . . J ).20 SURE-based nonlinear soft
thresholding on modulus maxima results in splitting the sig-
nal into subsets. Figure 5 shows the thresholding results and
respective splitting points on a decomposed signal. The first
derivative of a Gaussian function is used as a mother wavelet
function on the block function with the sample size of 2048.
Tracing these modulus maxima lines from a coarser scale to
a finer scale results in giving the split edges at a convergence
point on the finest scale. A nonlinear soft thresholding at the
decomposition level J = 10 (where total signal size = 2J )
results in giving all split points. Figure 6 shows the subsets
along with the split points obtained in the original Block

signal by applying SURE-based nonlinear soft thresholding.
It can be seen from the figure that it is possible to split the
signal from the sharp transitions or edges by locating their
modulus maxima on coarser scales. After splitting the sig-
nal into respective subsets, the next step is to identify the
noise elements and to reconstruct the signal without taking
into account noisy samples. We will explain the proposed
noise extraction method and reconstruction technique in
Sec. 3.

3 Piecewise Estimation of Singular Points
and Reconstruction

The second stage of the denoising algorithm deals with the
extraction of noise elements from each subset individually.
Mallat highlighted that the wavelet transform has a sequence
of local maxima that converges to a point at a finer scale even
though the function is regular at that point.1 Therefore, in or-
der to detect the singularities it is not sufficient to follow the
wavelet modulus maxima across scales. The Lipschitz expo-
nents measure the regularity or singularity from the decay of
these modulus maxima lines. A modulus maxima line is any
connected curve S(u) in the scale-space plane (u, s) along
which all points are modulus maxima. It is shown by Mallat

Fig. 5 The continuous wavelet transform (CWT)-based decomposition of the block function at scale J = 10 (with ψ = −θ ′, first derivative of
Gaussian function) is shown with the dotted lines (where total signal size = 2J ). The nonzero solid line point shows the proposed splitting points
after applying nonlinear soft thresholding at scale J. It can be noted that the soft thresholding results in reducing the energy of the nonzero
coefficients. After applying threshold, all the coefficients with nonzero energy are considered as split points.
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Fig. 6 (a) Signal with Gaussian white noise σ= 1 addition with proposed split points and (b)–(m) subsets of noisy signal.

that point wise singularities can be computed by measuring
the decay of slope of log2|W f (u, s)| as a function of log2(s)
and is termed as the Lipschitz exponent.1, 2

Definition1: Let n be a positive integer and n < α
< n + 1. A function f (x) is said to be Lipschitz α, at x0,
if and only if there exists two constants A and h0 > 0 and a
polynomial of order n, Pn(x), such that for h < h0:1

f (x0 + h) − Pn(h) ≤ A|h|α. (5)

Lipschitz exponents can be computed from the decay-
ing slope of modulus maxima lines by using Eq. (5). If the
Lipschitz value of the particular point is less than 1, then
it corresponds to the singularity, as the signal is not differ-
entiable. In the present work, by utilizing the property of
Lipschitz exponents all the differentiable points (α > 1) are
used in the reconstruction process.

3.1 Reconstruction Based on Minimization
Technique

The present method proposes to restore each subset individu-
ally by using regular points extracted on the basis of their Lip-
schitz exponent values. The reconstruction method utilizes
all sampled points and used minimization-based polynomial
functioning to restore the signal.

Let us define all the differentiable points (α > 1) as reg-
ular points. In order to avoid the effect of discontinuity, the
regular points itself were not included in the reconstruction
process. The area between two regular points is termed a
segment. Therefore, the subset containing M regular points

results in giving M − 1 segments in a respective subset of
the signal. The schematic diagram explaining the concept of
reconstruction and notation is given in Fig. 7.

Fig. 7 Schematic explanation of polynomial-based reconstruction.
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Fig. 8 (a) Signal with Gaussian white noise σ= 1 addition with proposed split points, (b)–(m) reconstructed subset of signal, and (n) reconstructed
signal (RMSE = 0.13).

Suppose ym,l = ai,m + bi,m xm,l + ci,m x2
m,l represents the

function between two regular points Oi,m and Oi,m+1 in sub-
set i , where i = 1, . . . , J is the index of the respective subset
with m = 1 , . . . , M regular points and contains ym,l sample
points (l = 1 , . . . , Ki ) in each subset. Ki represents the total
number of samples in the respective subset i . xm represents
the data sample of segment m. As each segment is assumed
to be at origin with the coordinate point at (0, 0), the respec-
tive offset will be added after the polynomial estimation for

all samples. Each segment is represented by the quadratic
polynomial function. In order to solve the equation to find
three coefficients, we assume each segment at origin,

P(0) = 0 = ai,m, (6)

and

P(xm,Ki ) = ym,Ki = ai,m + bi,m xm,Ki + ci,m x2
m,Ki

, (7)
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Fig. 9 (a) Piecewise Linear noisy signal (SD(f )/σ = 7), (b) SURE Shrink reconstruction [root-mean-square error (RMSE) = 0.36] and (c) SSplit
reconstruction (RMSE = 0.16).

bi,m =
ym,Ki − ai,m − ci,m x2

m,Ki

xm,Ki

. (8)

By using the minimization technique

ci,m =
Ki −1∑

l=1

(P(xm,l ) − ym,l)2, (9)

δci,m

δxm,l
= 0. (10)

After solving these coefficients for each segment in the
subset, all the points (x ′

m,l , y′
m,l ) in the subset i have been

reconstructed with the addition of offset values such that:

(xi , yi ) = (x ′
m,l + xi,m , y′

m,l + yi,m) (11)

Fig. 10 (a) Noisy signal with 512 Samples, (b) SURE Shrink reconstruction (RMSE = 0.67), and (c) SSplit reconstruction (RMSE = 0.29).
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Table 1 Root-mean-square-errors estimation by using different sam-
ple size (Gaussian white noise σ= 1).

Total sample Visu shrink Risk shrink SURE shrink SSplit

512 1.12 .80 0.67 0.29

1024 1.03 .72 0.6 0.23

2048 .85 .60 0.437 0.13

4096 .72 .50 0.369 0.08

8192 .59 .42 0.315 0.079

where (xi,m, yi,m) represents the coordinates of regular points
and (xi , yi ) represents the reconstructed points in the respec-
tive i subset. Final merging of all reconstructed subsets re-
sults in giving the complete denoised signal.

4 Results and Discussion
Figure 8 shows the result on noisy Block function (sam-
ple size of 2048) along with the reconstructed subset. Final
merging of all these subset results in giving the whole recon-
structed signal [(Fig. 8(n)]. In some of the subsets [Figs. 8(c),
8(g), 8(m)] where there exist no regular points, the recon-
struction process results in giving a straight line between
control points. The proposed algorithm performs quite well
with the mean square error of 0.13 for a 2048 sample size
(Fig. 8). Furthermore, the method works equally well on
piecewise linear functions as well as shown in Fig. 9. The
comparative study with some of the previously proposed
methods is given in Sec. 4.1.

Table 2 Root-mean-square-errors of estimation by using different
wavelets (Gaussian white noise σ= 1, sample = 2048).

Mother wavelet SURE shrink SSplit

Haar 0.41 0.153

Daubechies 4 0.5 0.179

Coiflet 3 0.54 0.172

Symmlet 8 0.56 0.126

4.1 Comparative Analysis with SURE Shrinkage
Approach

In this section, we present the comparative analysis of
SSplit with the classical shrinkage methods (SURE shrink,
risk shrink, and, visu shrink11, 12). The first criterion to an-
alyze in this regard is the sample size. Sample size plays a
critical role in most of the signal analysis techniques and the
performance of most of the denoising methods is limited with
the number of samples. Figure 10 shows the results of SURE
shrink and SSplit method with the sample size of 512. It can
be seen from the figure that reduction in sample size does not
effect the performance of the SSplit method. Therefore, the
SSplit method can give much better results in the cases where
the efficiency of the system is dependent on the total number
of sample size. Table 1 summarizes the comparison (in terms
of root-mean-square error) of the SSplit method with the
SURE shrink, risk shrink, and VISU shrink methods with dif-
ferent sample sizes. We have presented our findings by adding
different variance of Gaussian white noise in Fig. 11. In or-
der to evaluate the performance, the method has been tested
with different wavelet functions, e.g., Haar, Daubechies 4,

Fig. 11 Comparison : SURE shrinkage and SSplit method in terms of root mean square error with the noise of different variance (0, σ ).
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Fig. 12 (a) Signal with speckle noise addition SD(f )/σ = 7, (b) SURE shrink reconstruction (RMSE = 0.73), and (c) SSplit reconstruction (RMSE
= 0.14).

Coiflet 3 and Symmlet 8. Table 2 concludes that the method
worked equally well in this case and will result in giving
better statistics as compared to the SURE shrink method. At
the last stage, the method has also been checked with the
different types of noise elements, e.g., speckle and Poisson
noise. In the case of multiplicative noise, variance of the noise
is a function of the signal and the noise variance is higher
when amplitude of the signal is higher. It can be seen from
Fig. 12 that the proposed method outperforms the SURE
shrink method with the resulting root-mean-square error
of 0.14. Table 3 summarizes the statistical results obtained
with different types of noises. However, since the proposed
method is presently restricted to only specific types of singu-
larities (discontinuous signal), and in most of the cases the
specialized algorithm works better than the general cases.

4.2 Comparative Analysis with the State-of-the-Art
SURE-LET Denoising Approach

In order to illustrate the performance of the method with
the state–of–the–art denoising techniques, we had compared
the results with the most recent ”SURE linear expansion

Table 3 Root-mean-square errors of estimation by using different
types of noise [SD(f )/σ = 7].

Noise type SURE shrink SSplit

Poisson noise 0.82 0.26

Speckle noise 4 0.73 0.14

White Gaussian noise 0.46 0.15

of thresholds (LET)” denoising approach proposed by Blu
et al.21 The SURE-LET method is based on the minimization
of an estimate of the mean squared error—SURE. Further-
more, in the case of SURE-LET, the denoising process can be
expressed as a linear combination of elementary denoising
processes—LET. Here, we are not presenting the theory and
discussion of the method but for the interested readers, the
complete details and explanation of the method is given by
Blu et al. in Ref. 21.

In this section, we will present the comparison of the state-
of-the-art SURE-LET denoising method, classical SURE
shrinkage methods with the proposed SSplit method. Fig-
ure 13 presents the results on a synthetic block signal with
the three methods. The new method outperforms the SURE
shrinkage method and gives very close statistical results to
the SURE-LET denoising method. In terms of visual anal-
ysis, the SSplit method gives relatively better results as
compared to SURE-LET, but due to very few noise arti-
facts near discontinuous edges the method gives little higher
MSE as compared to the SURE-LET method. The more de-
tailed comparison with different noise variance is given in
the graphical form in Fig. 14. The obtained results of the
SSplit method is approximately the same as the SURE-LET
method.

Table 4 presents the results in terms of signal-to-noise ra-
tio (SNR) as well. The same trend is obtained in this case.
The SNR from both recently proposed denoising methods,
SURE-LET and SSplit, give higher and close SNR and out-
performs the classical SURE shrinkage method.

The comparative analysis of the proposed SSplit method
with the most recent state-of-the-art method SURE-LET and
classical SURE shrinkage method has been presented in this
section. It has been observed that the method works equally

Optical Engineering November 2011/Vol. 50(11)117004-9
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Fig. 13 (a) Signal with Gaussian noise addition (input MSE = 0.476), (b) SURE shrink reconstruction (MSE = 0.094), (c) SSplit reconstruction
(MSE = 0.009), and d) SURE-LET reconstruction (MSE = 0.0074).

Fig. 14 Comparison: SURE-LET, SURE shrinkage, and SSplit meth-
ods in terms of mean square error with noise of different variance.

Table 4 Comparison: SURE-LET, SURE shrinkage, and SSplit meth-
ods in terms of SNR.

Input SNR
SURE Shrink

(SNR)
SURE-LET

(SNR)
SSplit
(SNR)

18.474 24.47 34.90 32.04

19.11 25.08 35.62 32.84

20.72 26.15 37.34 35.50

21.75 26.32 38.37 36.71

23.02 27.63 39.57 37.94

24.63 28.69 41.01 39.86

26.79 29.52 42.78 42.23

Fig. 15 (a) Synthetic block function with two discontinuities, A represents the strength in terms of an amplitude of the high step and (b) function
with the white gaussian noise (0,1).

Optical Engineering November 2011/Vol. 50(11)117004-10
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Fig. 16 Evolution of maxima at position x by varying A amplitude,
along with the probabilistic SURE threshold curve (dashed line). For
each A value, edge at position x can only be detected at the scale
where the deterministic value is higher than the probabilistic value.

Fig. 18 (a) Noisy signal, (b) SURE shrink, and (c) SSplit with ex-
tended multisplitting approach (A = 0.8).

Fig. 17 (a) First stage splitting and (b) and (c) second stage splitting of subset with multisplitting approach (A = 0.8).

Optical Engineering November 2011/Vol. 50(11)117004-11
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Fig. 19 Root mean square error by varying A amplitude with N(0,1).

well as a SURE-LET denoising technique. Therefore, we
conclude that if we split the signal then the denoising in
spatial domain can work equally well as in the transform
domain.

5 Application : Extraction of Small Singularities
The initial denoising results are very encouraging to extend
this approach for the identification of small singularities hid-
den inside the noisy signals. In contrast to the several pro-
posed algorithms in the past, the SSplit method can detect
small discontinuities or singularities hidden inside the signal.
In several denoising methods, such small singularities are ei-
ther suppressed during the denoising process or ignored due
to their insignificance in most of the cases. Therefore, the ef-
ficiency of such denoising methods depends on the strength
and significance of such small discontinuities. These small

but sharp singularities suffer due to the mutual influence
of their adjacent high energy transitions,22 e.g., Fig. 15 ex-
plains this phenomenon, where small edges are suppressed
due to the mutual influence of its adjacent sharp transition. In
Fig. 15, “A” defines the strength in terms of an amplitude of
the strong discontinuity, whose influence does not allow the
detection of an adjacent small edge of an amplitude “1-A.”
Since splitting is based on the SURE-based threshold crite-
rion, the selection of the correct thresholding scale is crucial
to the accurate splitting. Figure 16 shows the decay proba-
bilistic curve of the SURE-based threshold across successive
scales along with the deterministic curve of small edge at “x”
position (shown in Figure 15) with different A values. For
each A value, the edge at x can only be detected at the scale
where the deterministic value is higher than the probabilistic
value as Fig. 14 highlights the minimum scale required to
identify the edge at position x with a particular A value.

In order to identify such small edges, the SSplit method
was extended to the multisplitting approach. It is possible
to further split the subset by applying the same splitting
technique on subsets. Figure 17 gives the explanation of the
multisplitting approach. At the first stage of splitting, the
small discontinuity hidden at the location of x can not be
detected. Therefore, the SSplit method is again applied on
subset C to identify the small edge. Subset C is further split
into two more subsets by using the same SSplit approach, and
finally the complete denoised signal can be reconstructed by
using a total of 4 subsets. Figure 18 presents the results
obtained with the SURE shrink and multiSSplit methods in
the case of a small discontinuity (A = 0.8). It can be seen
from the figure that the proposed method not only denoised
the signal reasonably well but also preserved the small edges.
The comparison graph of the SURE shrink and multiSSplit
methods by varying amplitude A is given in Fig. 19. The
graph shows the comparative analysis (in terms of root-mean-
square error) of the SSplit method and classical SURE shrink
method by varying A value.

Fig. 20 Comparison: (a) Original signal, (b) Signal with Gaussian noise addition (input SNR = 24.3 dB), (c) SURE-LET reconstruction
(SNR = 32.11 dB), and (d) SSplit reconstruction (SNR = 40.5 dB).
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Fig. 21 Comparison: (a) Original signal, (b) Signal with Gaussian noise addition (input MSE = 2.05), (c) SSplit reconstruction (MSE SSPLIT
= 0.09), (d) SURE-LET reconstruction (MSE SURE-LET = 0.12).

5.1 Comparison with SURE-LET Denoising
Approach for Small Edges

For the present case, the method has been compared with the
SURE-LET approach as well. It can be seen from Fig. 20
that the SSplit method not only kept the small singularity but
also removed the noise elements better than the SURE-LET
approach. SURE-LET removed the noise elements but kept
some oscillations and failed in preserving a small edge after
denoising. Since the proposed SSplit method is particularly
addressed, such types of signal (piecewise linear or constant)
therefore works better in both high variance of noise and
preserves very small transitions as well.

The proposed method (SSplit) particularly addressed the
problem of preserving edges in the presence of noise ele-
ments. Several noise levels have been tested and the obtained
results justified the main objective of the method. In the
second stage, the method has been compared with a state-of-
the-art SURE-LET denoising approach. The results shown
in the paper present the comparable performance of both
methods. However, in the case of very high variance of noise
(as shown below), the proposed SSplit method performed
better than the SURE-LET approach. More importantly, the
SSplit method preserved the sharpness of the edges or the
discontinuity of the signal. In many practical applications
(e.g., in medical applications), it is of extreme importance to
localize these discontinuities present inside the signal. The
SURE-LET method no doubt had removed the noise ele-
ments significantly and approximately the same statistical
results in terms of MSE, but has smoothed the edges as well.
This property is particularly observed in the case of high
variance of noise as shown in Fig. 21. Again, our results are
visually more satisfactory.

6 Conclusion
In this paper, a novel approach for the removal of noise ele-
ments from piecewise linear or constant signals is presented.
The foundation of this technique is based on the modulus

maxima technique, shrinkage approach, and splitting con-
cept. The most useful aspect of the proposed algorithm is the
separation of sharp edges or transitions from noise elements.
Based on SURE estimation, thresholding is performed on
modulus maxima across a selected scale to split the signal
from edges. The wavelet transform has proved to be a sig-
nificant tool to extract noise elements by locating modulus
maxima. Lipschitz exponents computed from the decaying
slope of modulus maxima results in identifying the noise ele-
ments. By using these Lipschitz exponents, the signal was re-
stored by using a polynomial fitting. Statistical results proved
that the proposed method performs better than the conven-
tional shrinkage methods with different types of noise. Unlike
many shrinkage approaches, the efficiency of the method is
not dependent on the sample size as well. The method has
been compared with the most recent state-of-the-art method
SURE-LET denoising approach. The SSplit method based in
spatial domain works equally well as compared to the SURE-
LET methodology. Another contribution of the present work
is explained in Sec. 5. The proposed method can be used
for the extraction of small singularities hidden inside the
signal. Such small edges cannot be detected due to the mu-
tual influence of their adjacent strong transitions. In order
to detect such types of transitions, the SSplit method has
been extended to the multisplitting approach. Statistical re-
sults showed that the method can efficiently identify such
types of edges. In the present study, only specific discontinu-
ous synthetic signals were addressed, but in future work the
same splitting concept will be presented to remove the noise
elements on other types of continuous signals with little or
no discontinuity. We presently refine the reconstruction pro-
cess by adding continuity conditions between segments and
an adaptation in two dimension of a splitting principle is in
progress.
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