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9 A vision-based method is proposed to measure the 3D shape of external and internal surfaces (not accessible) of
10 smooth transparent objects. Looking at the reflections of point sources on a specular surface with a polarimetric
11 camera, we combine the measurements of two techniques: shape from distortion and shape from polarization.
12 It permits us to recover the position and orientation of the specular surface for each detected point. The internal
13 surface of transparent objects exhibiting as well a specular component, the same technique is used on the highlights
14 coming from the back surface, taking into account the refraction by using polarimetric ray tracing. © 2014 Optical

Society of America
15 OCIS codes: (150.6910) Three-dimensional sensing; (110.5405) Polarimetric imaging.
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17 The 3D reconstruction of transparent objects is still an
18 open problem in computer vision as shown in the state
19 of the art of Ihrke et al. [1]. Transparent surfaces often
20 have a partial specular behavior, so techniques devel-
21 oped to acquire purely specular objects can be used to
22 get the external shape; for example, a shape from distor-
23 tion techniques [2,3], polarization [4,5], or scatter-trace
24 photography [6]. Several methods aim at reconstructing
25 completely transparent objects, with both internal and
26 external shapes—light field distorsion [7], direct ray mea-
27 surement [8], and tomography [9]—by immersing the
28 object into a fluorescent fluid [10] or by using motion
29 [11]. Those techniques rely on light transmission rather
30 than reflection. In fact, the internal surface of transparent
31 objects presents as well as the external one a partial
32 specular behavior. The approach in this Letter is devel-
33 oped for nonaccessible internal surfaces of transparent
34 objects. It relies on specular measurement technique.
35 We focus on locally planar surfaces, and we tackle the
36 extension to more general surfaces with first results
37 on cylindrical surfaces.
38 Figure 1 illustrates the observation of one pattern
39 reflected from both faces of a transparent object. One
40 part of light is reflected on the external surface, at point
41 P1. Another part is first transmitted at point I, then re-
42 flected on the back surface, and transmitted again at
43 point J [Fig. 1(a)]. These two light paths create an over-
44 lapped image. For example, the two reflections of a grid
45 pattern on a transparent plate can be seen Fig. 1(b). With
46 a dense pattern, or global illumination, these two reflec-
47 tions would be superimposed, making the measurement
48 difficult. The idea is then to use a sparse set of illumina-
49 tion points, so that the reflections are more likely to be
50 separated in the image. But with sparse data, most of the
51 current techniques used to scan specular surfaces cannot
52 be applied.
53 For example, a shape from distortion techniques con-
54 sists in looking at the reflection of a known point source
55 S on a specular surface with a calibrated camera. The
56 surface must lie on the reflected line r⃗1 [Fig. 2(a)]. This
57 ray and the point source S define a plane Π1, which is the

58incidence plane. The reflection determines the depth d1
59and the surface normal n⃗1 only up to a 1D family of sol-
60ution [12]: the knowledge of the normal gives the dis-
61tance and the other way round. Usually, this ambiguity
62is lifted with optimization and integration [1], but this
63cannot be applied with sparse point source.
64Therefore the shape from polarization technique con-
65sists in computing the normal map of the observed specu-
66lar surface by measuring the polarization state of the light
67reflected from the surface, assuming prior knowledge of
68the refraction index n. The Stokes vector of the observed
69light is calculated as follows:

S1r ! C"φ#R1→n"θ1r#C"−φ#Si; (1)

70with Si ! "1; 0; 0; 0#T the incident Stokes vector, corre-
71sponding to unpolarized light. C is the Mueller rotation
72matrix, and φ is the angle between the world coordinate
73system and the coordinate system of the plane Π1. R is
74the Mueller reflection matrix [13], which depends on
75the incident angle θ1r . We denote R1→n because the light
76is going from the medium with index of refraction 1 (air)
77to the transparent medium with index n. The result of
78Eq. (1) corresponds to a light that is partially linearly

F1:1Fig. 1. Specular behavior of the two surfaces of a transparent
F1:2object. (a) Ray tracing for the reflection of a point source.
F1:3(b) Observation of the reflections of a regular grid on a trans-
F1:4parent planar plate.
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79 polarized, perpendicularly to the plane of incidence Π1.
80 The ellipticity being equal to zero, a polarizer with at least
81 three orientations (partial Stokes polarimeter) is suffi-
82 cient to measure the polarization state [14]. The degree
83 of polarization of the reflected light is directly related to
84 the angle of incidence [Fig. 2(b)]. Given the measured de-
85 gree ρ1M , there are two possible angles θ1r . Some means
86 exist to lift this ambiguity [15], but in our case incidence
87 angles are supposed to be inferior to the Brewster angle
88 θBe. The angle of polarization is directly linked with the
89 orientation of the plane of incidence Π1. Then the mea-
90 surements ρ1M and φ enable us to compute the surface
91 normal n⃗1 at the incidence point P1.
92 Our method consists in combining the results of those
93 two methods. The shape from distortion gives the orien-
94 tation position ambiguity, and the degree of polarization
95 of the reflection ρ1M lifts this ambiguity. We can notice
96 that the orientation of the incidence plane Π1 is entirely
97 defined by the shape from distortion measurement, so
98 the angle of polarization estimation gives redundant in-
99 formation.

100 Now we suppose that the shape and position of the ex-
101 ternal surface are estimated, and we suppose that this
102 surface Sl is locally planar around the points I, J, and
103 P1, (same normal n⃗1). This assumption is called the pla-
104 nar hypothesis, it is more and more crucial when the
105 thickness of the object is increased (implying a larger dis-
106 tance IJ on external surface). In the image, the reflection
107 coming from the internal surface enables to compute the
108 ray r⃗2. This ray intersects the local external surface Sl at
109 point J [Fig. 3(a)]. The internal surface must lie on the
110 refracted ray r⃗2t. We studied the geometrical constraints
111 between the position and orientation of this internal sur-
112 face, taking into account the refraction.
113 First, we set the distance d2 of the point P2 along the
114 ray r⃗2t. Because of the refraction at point I, the path be-
115 tween S and P2 is no longer a straight line. The rays i⃗2 and
116 i⃗2t are unknown, as well as the point I, so the normal n⃗2
117 cannot be computed directly. The goal is to find the path
118 of light between S and P2, which is equivalent to find the
119 point I position. This problem was addressed by Glaeser
120 and Schröcker [16]. It can be simplified to a 1D problem
121 by defining a new coordinate system, in an auxiliary
122 plane Π2i defined by the points S, P2, and the vector
123 n⃗1 [Fig. 3(b)]. This plane is the plane of incidence of
124 the first refraction occurring at I. The point I must lie
125 on the line defined by y0. This problem involves the
126 Fermat’s principle, with path-time minimization. The

127two authors showed that the solution is the root of a
128fourth-degree polynomial, and that it exists exactly at
129one root in the interval $0; Py%, which is the real solution.
130Once the point I is computed, it enables the computation
131of the ray i⃗2t. Finally, the normal n⃗2 is then the bisector of
132the two rays r⃗2t and i⃗2t.
133On the contrary, we set the normal n⃗2. With the vecto-
134rial form of Snell’s law, and the planar hypothesis, the
135vector i⃗2t and then the vector i⃗2 are computed. Knowing
136the starting point of light S, the point P2 can be trian-
137gulated.
138Finally, we showed that the shape from distortion tech-
139nique applied to the internal surface presents the same
140position orientation ambiguity as for the external surface
141(assuming the planar hypothesis).
142We also studied the shape from polarization method
143for the reflection coming from the internal surface. In
144the Mueller calculus, we have now to take into account
145one transmission (incident angle θ2i), one reflection (in-
146cident angle θ2r), and again one transmission (incident
147angle θ2s). Between each reflection/transmission, a rota-
148tor Mueller matrix is applied in order to be in the refer-
149ence system of the corresponding incident plane. In the
150general case, the three incidence planes are different.
151The resulting Stokes vector of the observed light is:

S2r ! C"φs#Tn→1"θ2s#C"−φs#

:C"φr#Rn→1"θ2r#C"−φr#

:C"φi#T1→n"θ2i#C"−φi#Si: (2)
152

F2:1 Fig. 2. (a) Shape from distortion ambiguity for the external
F2:2 surface. (b) Degree of polarization ρ1 as a function of the inci-
F2:3 dence angle on the external surface θ1r .

F3:1Fig. 3. Shape from distortion ambiguity for the internal sur-
F3:2face. (a) Given the position of point P2 along the ray r⃗2t, we
F3:3cannot directly compute the normal n⃗2, as we do not know
F3:4either the ray i⃗2t or i⃗2. (b) Placing into the plane of incidence
F3:5Π2i, we can compute the path of light by using Fermat’s prin-
F3:6ciple. (c) Once the point I position is computed, it is possible to
F3:7get the normal n⃗2. The reverse, computation of P2 position
F3:8from the normal n⃗2, is straightforward using Snell’s law and
F3:9triangulation.
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153 We suppose that there is never total internal reflection.
154 From Eq. (2), we can show easily that the fourth compo-
155 nent of the Stokes vector is zero; hence the ellipticity is
156 equal to zero, and the light is partially linearly polarized.
157 Then the Stokes measurement requires the same setup as
158 for the external surface (a partial Stokes polarimeter).
159 The parameters φs and θ2s can be inferred by computing
160 the point J intersection between the ray r⃗2 and the local
161 external surface Sl. So we have here four unknowns,
162 compared to only two for the external reflection. We
163 were not able to split up the equations between the
164 parameters φ and θ, so we did not find how to directly
165 measure the orientation of the normal n⃗2.
166 But in the particular case when the three incidence
167 planes are coplanar, several rotation matrices cancel
168 each other out. Equation (2) becomes

S2r ! C"φs#Tn→1"θ2s#Rn→1"θ2r#T1→n"θ2i#C"−φi#Si: (3)

169 Neither C"−φi#, neither C"φs# play a role on the value of
170 the degree of polarization. Figure 4(b) illustrates the geo-
171 metrical constraints on the three incident angles. The
172 points I, J, and P2 form a triangle, making the angle
173 θ2i directly linked with θ2r . The only remaining unknown
174 is θ2r , and we can compute ρ2 as function of this variable
175 [Fig. 4(a)]. We observe that the value of the parameter
176 θ2si changes slightly the shape of this function. We ap-
177 plied several constraints on the angles values: θ2r and
178 θ2it smaller than total reflection angle, and β smaller than
179 90°. We see that the resulting shape is similar to the shape
180 on the function Fig. 2(b). Therefore the measurement ρ2M
181 permits to compute the angle of incidence θ2r (this angle
182 is supposed to be inferior to the Brewster angle θBi).
183 So the combination of the two techniques gives the
184 same result as for the external surface in this coplanar
185 case: given the reflected ray r⃗2, and the measurement
186 ρ2M , it is possible to uniquely recover position and orien-
187 tation of the internal surface.
188 In the general case, where the incidence planes are not
189 necessarily equal, we propose to combine both tech-
190 niques by computing the position of P2 with numerical
191 optimization by finding the root of the equation:

f "d2# ! ρ2M − ρ"d2#: (4)

192Given the distance d2 [Fig. 3(c)], we have already shown
193that it is possible to compute the point I position and then
194to get the whole light path. Then, by using Mueller calcu-
195lus with Eq. (2), it is possible to simulate the degree of
196polarization ρ"d2# associated with this distance d2. The
197value d2, for which the measured degree of polarization
198ρ2M and the simulated one ρ2 are equal, corresponds to
199the actual distance of the point P2 along the ray r⃗2t. So, in
200the general case, the measurement ρ2M also enables us to
201lift the position orientation ambiguity.
202Our algorithm is as follows. We suppose that the sys-
203tem is fully calibrated and that the medium is homo-
204geneous, non-birefrigent, with a known index of
205refraction n. We also suppose the planar hypothesis
206for the external surface.

207(1) Detection of the reflections of the point sources in
208the image. Association with one real point source, and
209association with external or internal surface
210(2) Measurement of ρ1M and ρ2M
211(3) Computation of the rays r⃗1 and r⃗2
212(4) Computation of θ1r [Fig. 2(b)], and of the
213normal n⃗1
214(5) Computation of P1, and of the local surface Sl
215(6) Computation of the intersection J between ray r⃗2
216and Sl, then computation of the refracted ray r⃗2t
217(7) Computation of the root of the function f , Eq. (4)
218with polarimetric ray tracing, with Eq. (2). The solution
219gives the point P2
220(8) Computation of the thickness e, distance between
221Sl and P2, and computation of the normal n⃗2

222We have implemented [Fig. 5(a)] our approach with a
223partial Stokes polarimeter and an appropriate diffuse
224light source. We used a monochromatic Basler camera
225acA1300-30 gm, 1280 × 960 pixels and a linear polarizer

F4:1 Fig. 4. Shape from polarization for the internal surface in the
F4:2 coplanar case. (a) Degree of polarization ρ2 as a function of the
F4:3 incident angle on the internal surface θ2r , for three values of
F4:4 θ2si. (b) Geometry in the coplanar case.

F5:1Fig. 5. Experimental results. (a) Our setup with a Plexiglas
F5:2planar plate. (b) Image of the plate taken with the polarizer
F5:3oriented at 0°. (c) Reconstruction result on the plate for each
F5:4reconstructed points, tangent plane, and normal vector are
F5:5plotted. (d) Reconstruction result on a Plexiglass cylinder.
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226 (rotated manually). The lighting was an array of LEDs
227 (which we consider as point light sources). We took
228 three images (each one averaged 10 times to reduce
229 noise) with the polarizer respectively oriented at 0°,
230 45°, and 90°. The intensities were computed globally
231 for each reflection, using a method derived from aperture
232 photometry [17]. Figure 5 presents results obtained with
233 a Plexiglas transparent planar plate of thickness 5 mm,
234 and with a Plexiglass transparent cylinder of diameter
235 80 mm and thickness 3 mm. The reflection of the point
236 sources on the two surfaces of the plate can be seen in
237 Fig. 5(b) (acquired with the polarizer at 0°). Figure 5(c) is
238 the reconstruction result of the plate situated at about
239 35 cm from the camera, with 32 points for each face.
240 The root-mean-square deviation of the measured normal
241 vectors was 0.14° for both faces. We evaluated the error
242 on the computed positions by fitting two planes on the
243 results and by measuring the distance between the recon-
244 structed point and these planes. The standard deviation
245 of these distances was 0.63 mm for both faces, and the
246 mean thickness was 4.98 mm. Figure 5(d) is a first
247 reconstruction result obtained on the cylinder, with 12
248 points on each face. We took into account the curvature
249 of the cylinder between points P1 and J to compute the
250 refracted ray r⃗2t. We fitted two cylinders on the results
251 and computed the standard deviation of the distances
252 with the two point clouds, which was 0.43 mm for the
253 external surface, and 0.58 mm for the internal one.
254 The mean measured thickness was 2.92 mm. We esti-
255 mated that an error of 0.05 on degrees of polarization in-
256 duces an error of 0.1° on the surfaces orientations and an
257 error of 0.3 mm on their positions. When a small position
258 error occurs on the external surface, it is reported on the
259 internal one, so that the point P2 is shifted by the same
260 error position, but the thickness stays almost the same.
261 In conclusion, the combination of shape from distor-
262 tion and shape from polarization techniques is able to di-
263 rectly measure the position and orientation of both faces
264 of a transparent object (assuming the two reflections are
265 separated on the image) and a known refraction index.
266 This approach, assuming only one surface is accessible,
267 can be easily used in industry for surfaces and thickness
268 inspection.

269In future work, we plan to use the technique of [15] to
270deal with an angle greater than Brewster. A deeper study
271of the polarization state of the light coming from the
272internal surface could be also interesting in order to com-
273pletely measure the orientation of this surface, even in
274non-coplanar cases. By doing so, we think we could
275use lines of light instead of points and then be able to
276acquire complete profiles of the objects. The density
277of the measure can also be improved by either using a
278controlled light source or moving the object in a scanning
279process. Finally we plan to relax the hypothesis about the
280local geometry of the external surface.
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