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Abstract—This paper addresses the noise estimation in the
digital domain and proposes a noise estimator based on the step
signal model. It is efficient for any distribution of noise because
it does not rely only on the smallest amplitudes in the signal
or image. The proposed approach uses polarized/directional
derivatives and a nonlinear combination of these derivatives to
estimate the noise distribution (e.g., Gaussian, Poisson, speckle,
etc.). The moments of this measured distribution can be computed
and are also calculated theoretically on the basis of noise
distribution models. The 1D performances are detailed, and as
our work is mostly dedicated to image processing, a 2D extension
is proposed. The 2D performances for several noise distributions
and noise models are presented and are compared to selected
other methods.
Index Terms—Noise estimation, noise estimator, step model,

edge model, digital signal, noise distribution, Gaussian white
noise, impulse noise, salt and pepper noise, Poisson noise,
nonlinear model, multiplicative noise, CCD sensor

I. INTRODUCTION

Noise is omnipresent in signals produced or transmitted by
real devices and most signal- and image-processing techniques
take (or should take) noise into account to obtain efficient
results. Data compression, pattern recognition, and 3D recon-
struction are examples in which it is essential to know the
noise level and, if possible, the noise distribution.

Certain works specifically address the problem of noise
estimation by primarily assuming the noise to be white and
additive. Filtering methods use cleaning filters (mean, median)
and measure the noise using the difference between noisy
and restored images [22]. The contribution of the pixels is
controlled by the gradient intensity (the contribution is null
for high gradient locations and for edges). Canny estimated the
noise from the lower 80th percentile in the gradient modulus
histogram of the edge response of his filter [3]. For Gaussian
white noise, Bracho and Sanderson [1] observed that the noise
gradient modulus is Rayleigh-distributed, and a distribution fit
leads to a standard deviation corresponding to the histogram
mode that is not strongly affected by edge gradients. Vorhess
and Poggio [32] improved this approach by considering only
the steepest part of the distribution that essentially contains
most of the noise. Several approaches to variance estimation
are block-based, and either the size of the blocks is fixed (size
5×5 [16], 7×7 or 8×8) or is variable, as in a multiresolution
pyramid; in the latter case, a sophisticated selection algorithm
is required [20]. A survey of the majority of the previously
cited methods can be found in [22]. The general conclusion
can be drawn that the simple average- and median-based
methods perform better than the block-based methods. In [26],

noise estimation for color images is proposed based on the
statistical prior knowledge that signal information is highly
correlated between the channels. Another interesting work on
noise estimation focuses on the camera CCD response [18],
[17].

Wavelet-based methods for the estimation of noise are
promising. De Stefano et al. [28] proposed three methods
that use wavelet decomposition of the image and a training
approach. Improvements in the gradient approach are based
on the Laplacian [9] and adaptive edge detection [29]. More
complex methods are proposed, such as that in [34], in which
the scale and orientation models for the structure allow for
noise and signal separation, and in [10] for noise estimation in
remote sensing via marginalized likelihood maximization.The
MAD estimator introduced by Donoho and Johnstone [7], [6]
is one of the most commonly used estimators, most likely due
to its efficiency and simplicity.

Noise estimate is often involved in signal and image de-
noising methods. De-noising methods often require a noise
estimate parameter or are based on a tradeoff between a noisy
solution and a smoothing solution in an iterative strategy as
proposed in [24], [15]. Those methods are dense because
all points must be restored. Therefore, the noise component
cannot always be clearly separated from the signal (due to
the tradeoff required in the solution). Methods that operate
in the spatial domain are essentially based on linear or
nonlinear filters (median, SUSAN [25], bilateral filtering [30])
and anisotropic diffusion [23], [31]. The introduction of the
wavelet and sparse theory has led to the development of
transform domain methods [6], [27], [12], [33], [19] that were
primarily based on the frequency approach. Reviews of a
portion of these de-noising methods can be found in [2], [21].

In this work, we propose the use of polarized first derivatives
to define a noise estimator. We introduced such derivatives
in [13] as a means of obtaining a new method for edge
detection in images, and this method presents interesting
properties that are applicable to both edge localization and
noise reduction.

The proposed noise estimator is based on the step signal
model. However, the proposed approach is able to deal with
any noise distribution and with any relationship between
the noise and the signal. The polarized derivatives lead to
measurements of the distribution of the noise based on the
separation of impulse components from the step signal. The
corresponding random variable is modeled, its probability dis-
tribution function is calculated and the first statistical moments
are expressed in terms of the noise parameters (e.g., the
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variance of a Gaussian additive noise). From this distribution,
an estimator is then defined to produce an estimate of the main
noise parameter. Notably, this method is able to take advantage
of the polarized derivatives to estimate the asymmetry of the
noise distribution. Theoretically, it is even possible to deduce
the noise distribution from the measured distribution.

The organization of this paper is as follows: the principle
of noise extraction is introduced in Section II followed by
the definition of the noise estimator in Section III. The
performance of the model for 1D signals is studied in Sec-
tion IV. In SectionV, a 2D extension and selected results are
proposed: this section is completed by a discussion of the
limitations of the proposed approach. Summary perspectives
conclude this work, and certain technical and complementary
details regarding the proposed approach can be found in the
supplemental report [14].

II. NOISE EXTRACTION

This section introduces the selected signal and noise def-
initions, the new derivative operators and, finally, the noise
measures. These measures will be used in Section III to define
the noise estimator.

A. Notations and definitions
We denote the following:
xk is the noisy digital signal at the instant (or the position)

k;
nk is the noise outcome at the instant or the position k and

Nk is the corresponding random variable;
PNk

is the probability density function (pdf ) of Nk;
σ is the standard deviation and v = σ2 the variance of the

noise distribution of Nk (in the case of an additive GWN or
Gaussian White Noise, σ is the parameter of the pdf ). The
signal model is assumed as the step function:

xk = AHk + nk (1)

where Hk is the Heaviside function: Hk = 1 if k ≥ 0, 0
elsewhere, and A is the amplitude.

We now introduce the following polarized and oriented
differentiating components:






yR+
k = T (xk+1 − xk)

yR−
k = −T [−(xk+1 − xk)]

yL+
k = T (xk − xk−1)

yL−
k = −T [−(xk − xk−1)]

(2)

where T is a nonlinear threshold operator: in this work T (u) =
u if u ≥ 0, 0 elsewhere. Simplifying the notations with the
polarized and oriented derivative operators DR+, DL+ : R →
R+ , DR− , DL− : R → R−, the components are now written
as: {

yL+ = DL+ (x) yR+ = DR+ (x)

yL− = DL− (x) yR− = DR− (x)
(3)

In the next sections, we demonstrate how to construct a noise
estimator based on these components. We introduce the signal
decomposition into the derivative components to produce a
noise extraction from these components.
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Figure 1. The signal x is assumed to be a sum of four elementary step signals
and four noise peaks (at k ∈ {2, 5, 8, 11}) or two elementary step signals (at
k ∈ {2, 11}), two smooth (aliased) steps (at k ∈ {5, 8}) and only two noise
peaks (at k ∈ {2, 11}). Polarized and oriented detections: yL+and yR− . The
nonlinear derivative yL+ detects the positive (and noisy) steps and positive
peaks. In the same way, yR− gives the negative (and noisy) steps and peaks.
y+ = min

(

yL+,−yR−

)

gives the peak noise values at k = 2 and k = 11.

B. Signal decomposition
Let us consider the operators DL+ and DR− and a some-

what realistic signal x as shown in Figure 1. Applying these
operators, we obtain yL+ and yR−. At the current abscissa k,
yL+ corresponds to a left-hand derivative on positive slopes
(defined on the abscissas k−1 and k). It follows that yL+ has
only non-zero values for k ∈ {2, 8, 9, 11}. yR− is the right-
hand derivative on negative slopes (defined on the abscissas k
and k+1) leading to non-zero values for k ∈ {2, 4, 5, 11}. The
signal x in Figure 1 can be seen as the sum of four elementary
step signals and a noise signal nk presenting non-zero values at
the positions {2, 5, 8, 11}. Another interpretation of the signal
is as follows: two elementary step signals (at k ∈ {2, 11}) and
two smooth (aliased) steps (at k ∈ {5, 8}) and only two noise
peaks (at k ∈ {2, 11}).

Inverting x leads to a similar analysis for DL− and DR+:
see Figure 2.

C. Noise measures
From the signals in the above section, we propose a defini-

tion of the noise measures:
{
y+ = min

(
yL+,−yR−

)

y− = −min
(
−yL−, yR+

) (4)

We focus now on y+ knowing that the same considerations
can be drawn for y−. In the example of Figure 1, y+2 = −yR−

2 ,

2
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Figure 2. The signal x is an inverted version of Figure 1. It is assumed to be a
sum of four elementary step signals and four noise peaks (at k ∈ {2, 5, 8, 11})
or two elementary step signals (at k ∈ {2, 11}), two smooth (aliased) steps
(at k ∈ {5, 8}) and only two noise peaks (at k ∈ {2, 11}). Polarized and
oriented detections: yR+and yL− and finally y− = −min

(

yR+,−yL−

)

.
y− also contains two peaks of noise.

y+11 = yL+
11 , elsewhere y+k = 0. This example shows that

y+ contains a part of the noise of the original signal x.
Considering the second assumption on x (aliasing of the two
steps at k ∈ {5, 8}), y+ is the noise signal.

Whatever the assumption on x, the components of y+ are:

yL+
k =

{
xk − xk−1 if xk ≥ xk−1

0 elsewhere
(5)

yR−
k =

{
0 if xk+1 > xk

xk+1 − xk elsewhere
(6)

and we have the following:

y+k =






0 if xk−1 ≤ xk < xk+1

min (xk − xk−1, xk − xk+1) if xk−1 ≤ xk ≥ xk+1

0 if xk−1 > xk < xk+1

0 if xk−1 > xk ≥ xk+1

(7)
y+k is always positive or null (y+k ≥ 0). Introducing the noisy
step model, y+ becomes for k /∈ {−1, 0, 1}:

y+k =

{
min (nk − nk−1, nk − nk+1) if nk−1 ≤ nk ≥ nk+1

0 elsewhere
(8)

or:

y+k =

{
nk −max (nk−1, nk+1) if nk−1 ≤ nk ≥ nk+1

0 elsewhere
(9)

For k ∈ {−1, 0, 1}, the amplitude A appears in the equation
and can bias the noise estimation. A detailed analysis of the
influence of A can be found in [14]. The influence on the
estimator is quantified in Section IV-B.
y+ leads to extraction of the positive part of the noise signal

while y− corresponds to the negative part. These two signals
are useful for analyzing asymmetric pdf .

III. THE NOISE ESTIMATOR NOLSE (NONLINEAR NOISE
ESTIMATOR)

From these noise measures, it is now possible to define a
new noise estimator. Assuming the original noise model as
known, the probability density function of these measures is
defined to allow for the deduction of the variance estimator
(and other moments) of the original noise distribution. The
Matlab-Octave code of the estimator is given in the report [14].

A. Probability density function (pdf ) of the measures
We are interested in the pdf associated with the noise

measures (e.g. y+). We have:

y+k =

{
nk −max (nk−1, nk+1) if nk−1 ≤ nk ≥ nk+1

0 elsewhere
(10)

We introduce the probability function PNk
of the random

variable Nk in which the outcomes are nk. Considering the
composed variable M corresponding to max (nk−1, nk+1), the
pdf , if nk−1 and nk+1 are independent for a study of point
correlation, is as follows:

PM (v) = PNk−1
(v)PNk+1

(Nk+1 < v)

+PNk−1
(Nk−1 < v)PNk+1

(v)

= 2PNk−1
(v)

ˆ v

−∞

PNk+1
(u)du

= 2PNk+1
(v)

ˆ v

−∞

PNk−1
(u)du

We now define the conditional probability PYk
of the random

variable Yk where the outcomes are nk − max (nk−1, nk+1)
with the condition nk−1 ≤ nk ≥ nk+1. The condition
means that the events in the variable Yk are not independent.
Nevertheless, it can be simplified as follows:

nk ≥ max(nk−1, nk+1) (11)

implying that y+k ≥ 0. Taking into account this result, the
composed variable can be written as:

Yk = Nk −M |Yk ≥ 0 (12)

meaning that this variable exists only for positive values
(Yk ≥ 0). The probability function PYk

can then be deduced
by convolution (y = n−m):

PYk
(y ≥ 0) =

ˆ ∞

−∞

PNk
(n)PM (n− y)dn

= 2

ˆ ∞

−∞

PNk
(n)PNk+1

(n− y)dn

×
ˆ n−y

−∞

PNk−1
(x)dx

3

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2013.2282123

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Knowing the process that generates the noise can be consid-
ered as location-independent, we finally have

PYk
(y ≥ 0) = 2

ˆ ∞

−∞

PNk
(n)PNk

(n− y)dn

ˆ n−y

−∞

PNk
(x)dx

(13)
The mean and second moment are then described by

E [Yk] =

ˆ ∞

0
yPYk

(y)dy (14)

E
[
Y 2
k

]
=

ˆ ∞

0
y2PYk

(y)dy (15)

Examples of such moments are given in Section III-D. These
moments are expressed in terms of the noise distribution
model parameters. The parameters can be estimated from the
moments computed from the measures. The association of
PYk

(y ≥ 0) and PYk
(y < 0) (for y−k ) leads for a symmetrical

noise distribution to a mean : E [Yk±] =
´∞

−∞
yPYk±(y)dy =

0 and a variance : E
[
Y 2
k±

]
=
´∞

−∞
y2PYk±(y)dy.

Proposition 1: Yk (corresponding to y+k or/and y−k )
is a combined variable of the original random processes
Nk−1, Nk, Nk+1. Given a model PNk

for Nk, it is possible to
analytically or numerically calculate the corresponding model
PYk

of Yk and its various moments. These predictions can then
be compared to the real measures of Yk.

B. Estimator NOLSE1 for a 1D signal
Previous sections show how the decomposition of a noisy

step signal can provide a distribution of noise strongly linked
to the original noise distribution. Clearly, the pdf of the
measure Yk is dependent on the pdf of the noise Nk. The
moments of the observation can be defined to characterize
the distribution (e.g., the two first moments). Because the
signal decomposition involves derivatives, the mean of the
noise cannot be estimated in the proposed approach.
Proposition 2: Using the second moment, we define the

following variance estimator (NOLSE1):

s2 = K2
1

N

N∑

k=1

y2k (16)

where K2 is a constant (∈ R+) depending on the assumed
kind of noise and N is the size of the signal. The second
moment and particularly the variance are often the most
relevant characteristics for noise distributions. More generally,
a p-order estimator can be defined:

sp = Kp
1

N

N∑

k=1

ypk , p ∈ {1, 2, 3...} (17)

C. Quality of the estimator
The quality of the estimator θ̃ of a variable θ can be

characterized [11] by its bias and its mean square error (MSE),





Bias
(
θ̃
)
= E

[
θ̃
]
− θ

MSE(θ̃) = E

[(
θ̃ − θ

)2
]
= V ar

[
θ̃
]
+Bias

(
θ̃
)2

(18)

The bias of the estimator s2 being null, its quality is measured
by its variance (V ar, see [14]). Let us consider now the
random variable S2 associated with the estimator s2,

S2 = K2
1

N

N∑

k=1

Y 2
k

The variance is as follows:

V ar
(
S2

)
= E

[
S4

]
− E

[
S2

]2

and finally (see [14]),

V ar(S2) = K2
2

1

N2

{
NE

[
Y 4

]
+ (2N − 4)E

[
Y 2
1 Y

2
3

]}

+K2
2

1

N2

{
(−5N + 6)E

[
Y 2

]2} (19)

This means V ar
(
S2

)
→ 0 as N → ∞. For example, in the

case of Gaussian white noise, the variance of the estimator
becomes

V ar
(
S2

)
=

82

π2

1

N2

{
N

2

13
π2σ4 + (2N − 4)

1

41
π2σ4

}

+
82

π2

1

N2

{
(−5N + 6)

1

82
π2σ4

}
(20)

and for a long signal

V ar
(
S2

)
≈

8

N
σ4 (21)

For example, the decay of the variance of the estimator of the
Gaussian white noise is 1/N (see Figure 3).
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Figure 3. Variance of the (second moment) estimator with respect to different
signal lengths, showing both theoretical values and experimental values
(Gaussian white noise).

D. Examples of estimators for GWN and impulse noise

We propose two examples of noise estimators corresponding
to two types of noise distributions: additive GWN and double
exponential noise distribution.

4
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1) Gaussian white noise: The pdf of the centered normal
random variable is defined as the Gaussian function:

PNk
(x) =

1

σ
√
2π

e−
x2

2σ2 (22)

It follows for this distribution that:

E [Yk] = ±
σ

2
√
π

, E
[
Y 2
k

]
=

π

8
σ2 (23)

Proposition 3: From the above result, we define the follow-
ing NOLSE1 estimator s2+ of the variance σ2 of the GWN:

s2+ =
8

π

1

N

N∑

k=1

(y+k )
2 (24)

where N is the size of the signal and K2 = 8
π

. Obviously,
an identical estimator s2− is defined for y−k and a mean s2 =(
s2+ + s2−

)
/2 is finally obtained for symmetric distributions,

s2 =
4

π

1

N

N∑

k=1

(
y+2
k + y−2

k

)
(25)

An estimation of σ can be also obtained using an estimator
based on the first moment (e.g., s1+ = 2

N

√
π
∑N

k=1 y
+
k ).

Experimentally we verified that the variances of S2 and (S1)
2

are similar for the corresponding Gaussian distribution.
2) Impulse or double exponential noise distribution: We

make reference to the impulse noise with a double exponential
noise distribution defined by the pdf :

PNk
(x) =

1

2β
e−

|x|
β (26)

where:
{
´∞

−∞
PNk

(x)dx = 1

E
[
X2

k

]
=
´∞

−∞
x2PNk

(x)dx = 2β2
(27)

Considering the random variable Yk associated with the noise
component y+k in Eq. 9 (or y−k ), we deduce the following:

PYk
(y) =






1
12β

(
−2e−

2
β y + 5e−

y
β

)
y > 0

2
3 y = 0

0 y < 0

(28)

E [Yk] = ±
3

8
β , E

[
Y 2
k

]
=

3

4
β2 (29)

Proposition 4: A NOLSE1 estimator of the parameter β
for the double exponential distribution is defined as follows:

sβ+ =
8

3

1

N

N∑

k=1

y+k (30)

K1 = 8
3 and the mean estimator is : sβ = (sβ+ + sβ−) /2

where sβ− = − 8
3

1
N

∑N
k=1 y

−
k .

Another estimator can be defined on the basis of the second
moment. We verify experimentally that the variances of the
estimators for the double exponential distribution are similar.

IV. 1D PERFORMANCE

The performance of the NOLSE1 estimator is studied for
a synthetic signal and noise (additive GWN). The influences
of edge density and point correlation are also simulated.
Finally, a typical noise distribution (double exponential) is
also tested, and the NOLSE1 performance is compared to
the MAD (Median Absolute Deviation) estimate (one of the
most commonly used noise estimator and renowned for being
one of the best).

A. Methods for comparison

As discussed in the introduction, we chose to compare the
proposed method with the MAD estimate,

s2MAD =

(
median(|d|)

0.6745

)2

(31)

where d is the first detail level of the wavelet analysis with
the Haar wavelet. The two methods share the same elementary
derivatives used to estimate the noise. We also use the MSE
measurement as a reference, if possible.

B. Influence of the edge density and the edge model on the
estimator (GWN)

The highest edge density in a discrete unit step edge model
corresponds to the following pattern: 0011 where the length
LP is 4. We then define the edge density by:

D =
4

LP
(32)

The details of this section and a theoretical study of the
influence of a more realistic edge signal can be found in the
report [14] (section 2.2). The variance with respect to the edge
amplitude for NOLSE1 and MAD are compared in Fig 4.
The maximum bias of NOLSE1 is approximately 27%. This
value is smaller for a realistic edge model at 15% . There is no
upper bound for the MAD estimator (however, a limit exists
due to the bounded signal amplitude).

Figure 5 shows the favorable performance of NOLSE1

when the edge density increases and also demonstrates the
sensitivity of MAD to edges. The line of the results of
Figure 5 leads to (for D ∈]0, 1]):

{
variance ≈ 0.986 + 0.248×D forMAD

variance ≈ 1.008 + 0.058×D forNOLSE1

We show in the report [14] that while the influence of the
edge is limited, it is not negligible for a high edge density.
However, in most real signals or images, the edge density is
not extremely high, and the extended edges counterbalance
this influence. In the case of high amplitudes (A > σ), the
estimate could be corrected by eliminating measures with high
edge amplitudes.

5
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Figure 4. MAD and NOLSE1 variance estimates according to the edge
amplitude A for the discrete periodic signal 00AA00AA... (highest density
D = 1, σ2 = 1). NOLSE1 is particularly robust (Gaussian white noise).

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0  0.2  0.4  0.6  0.8  1

va
ria

nc
e

D

NOLSE
MAD

Figure 5. MAD and NOLSE1 variance estimate for the discrete periodic
signal 00AA00AA... (A = 1, σ2 = 1) with respect to the edge density
(Gaussian white noise).

V. 2D EXTENSION AND APPLICATIONS

This section proposes a 2D extension of the NOLSE
estimator. The performance of the 2D estimator (NOLSE2)
is evaluated with several models and noise distributions. The
following images (size: 256×256 or 512×512) are used to
evaluate the performance: Barbara, Boat, House, Lena and
Office (see Figure 6). In this part, we denote the estimators
with the Greek letter ς and, in particular, the second moment
estimator with ν. We continue to refer to the 1D estimator
by the letter s. νMAD is the variance obtained using the
2D-version of the MAD estimator, and σ2 or v remains as
the Gaussian noise variance. The MSE measure (between
the original image and the noisy image), νMSE , will be
presented as an indicative value for real images because these
images are not free from noise (this noise being more or less
correlated). We introduce two efficient methods for additional
comparisons. One is based on the image convolution with the
Laplacian operator [9] (FNV E), and the other is the cor-
responding refinement with edge detection [29] (TY ). These
methods are not iterative and are more or less comparable with
MAD and NOLSE in algorithm complexity.

Figure 6. Test images: Barbara, Boat, House, Lena and Office.

A. Algorithm
Because the approach is based on the first derivative, certain

particular edge configurations can be seen as noise, and this
is the case for lines in an image or, more generally, for roof
profiles oriented in any direction. Most of these issues can be
avoided by extending the 1D algorithm along the two main
directions of the images. For each pixel I(i, j), the directional
noise components (the derivatives along the horizontal and
vertical directions) are computed. Defining the directional
operators DR+

i , DR+
j , DR−

i , ... a first measure of the noise
is established as follows:

{
y+j = min

(
DL+

j (I) ,−DR−
j (I)

)

y1 = min
(
DL+

i

(
y+j

)
,−DR−

i

(
y+j

))
y1≥0

(33)

The variable y1 is obtained by consecutively applying the
directional operators along the lines (intermediate result y+j )
and then along the columns. Other measures such as y2, y3, y4
can be obtained as follows:

{
y−j = −min

(
−DL−

j (I) , DR+
j (I)

)

y2 = −min
(
−DL−

i

(
y−j

)
, DR+

i

(
y−j

))
y2 ≤ 0

(34)

{
y+i = min

(
DL+

i (I) ,−DR−
i (I)

)

y3 = min
(
DL+

j

(
y+i

)
,−DR−

j

(
y+i

))
y3 ≥ 0

(35)

{
y−i = −min

(
−DL−

i (I) , DR+
i (I)

)

y4 = −min
(
−DL−

j

(
y−i

)
, DR+

j

(
y−i

))
y4 ≤ 0

(36)

Proposition 5: {yn}n=1,2,3,4 are measures of the noise
distribution in the image. A p order estimator ςpn on the
measures yn can generally be defined as:

ςpn = Kp
1

N

N∑

k=1

ypn,k , p ∈ {1, 2, 3...} (37)

where Kp ∈ R and N is the number of pixels. {yn}n=1,3 and
{yn}n=2,4 can be used to estimate asymmetrical distributions.

B. GWN in images
Proposition 6: For a Gaussian white noise, the set of

estimators for an input variance σ2 is (K2 = 4):
{

νn = 4
1

N

N∑

k=1

y2n,k

}

n=1,2,3,4

(38)

The mean estimator of the variance for symmetrical distribu-
tion of Gaussian noise is as follows:

ν =
4∑

n=1

1

N

N∑

k=1

y2n,k (39)
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Tables I, II, III, IV, and V, present comparison results for
MAD, FNV E, TY and NOLSE2, respectively. Except for
zero noise (natural noise only) or low level of noise, the
different methods give similar and satisfactory results.

When noise is added, the measure of the natural noise
is deducted from the new measure. Depending on the im-
age, NOLSE2 leads to rather different results because it
is sensitive to fine textures and generally overestimates the
noise level. MAD gives values depending on the image
quantification, FNV E over-estimates the noise level and TY
slightly underestimates the noise level. In the case of additive
Gaussian noise, the TY method seems to yield the most
reliable results.

Table I
ESTIMATES OF DIFFERENT GWN LEVELS (σadded). THE ESTIMATES

OBTAINED FOR THE ORIGINAL IMAGE (σ̃added = 0 → σ̃image ) ARE USED
TO COMPUTE σ̃added = σ̃ − σ̃image ..

Barbara (512×512) image : noise estimates of σadded

σadded MAD FNV E TY NOLSE2

0.00 3.71 4.96 2.28 8.57
2.00 2.60 2.58 2.30 1.78
5.00 5.98 5.87 5.48 4.63
9.98 11.25 10.88 10.65 9.57

15.05 16.44 15.83 15.86 14.52
20.06 21.51 20.80 20.64 19.62

Table II
ESTIMATES OF DIFFERENT GWN LEVELS (σadded). THE ESTIMATES

OBTAINED FOR THE ORIGINAL IMAGE (σ̃added = 0 → σ̃image ) ARE USED
TO COMPUTE σ̃added = σ̃ − σ̃image .

Boat image : noise estimates of σadded

σadded MAD FNV E TY NOLSE2

0.00 2.22 3.00 1.06 4.08
2.00 2.95 2.41 2.16 1.84
5.04 6.03 5.46 5.15 4.77
9.97 10.90 10.44 10.09 9.71

14.99 15.71 15.38 14.90 14.56
20.01 20.71 20.40 20.48 19.63

Table III
ESTIMATES OF DIFFERENT GWN LEVELS (σadded). THE ESTIMATES

OBTAINED FOR THE ORIGINAL IMAGE (σ̃added = 0 → σ̃image ) ARE USED
TO COMPUTE σ̃added = σ̃ − σ̃image ..

House image : noise estimates of σadded

σadded MAD FNV E TY NOLSE2

0.00 2.22 1.69 0.97 1.87
2.00 1.96 2.11 2.06 1.87
4.98 5.18 5.16 4.99 4.86

10.02 10.01 10.17 9.97 9.78
15.00 15.07 15.19 14.98 14.78
20.03 20.38 20.49 20.72 20.02

C. Speckle noise
The result J of multiplicative noise in an image is defined

as:
J = I + σ.η.I

where I is the original image, and η is a normalized Gaussian
noise distribution with a mean equal to 0 and a standard

Table IV
ESTIMATES OF DIFFERENT GWN LEVELS (σadded). THE ESTIMATES

OBTAINED FOR THE ORIGINAL IMAGE (σ̃added = 0 → σ̃image ) ARE USED
TO COMPUTE σ̃added = σ̃ − σ̃image ..

Lena image : noise estimates of σadded

σadded MAD FNV E TY NOLSE2

0.00 1.48 2.64 1.10 3.71
2.00 2.72 2.45 2.10 1.83
5.00 5.82 5.48 5.09 4.69
9.97 10.71 10.54 10.26 9.68
15.03 15.92 15.53 14.98 14.73
20.09 20.61 20.50 20.10 19.70

Table V
ESTIMATES OF DIFFERENT GWN LEVELS (σadded). THE ESTIMATES

OBTAINED FOR THE ORIGINAL IMAGE (σ̃added = 0 → σ̃image ) ARE USED
TO COMPUTE σ̃added = σ̃ − σ̃image ..

Office image : noise estimates of σadded

σadded MAD FNV E TY NOLSE2

0.00 0.74 1.31 1.30 1.12
2.00 2.39 2.23 1.74 1.88
5.01 5.38 5.20 4.90 4.74
10.02 10.26 10.22 9.98 9.63
14.95 15.11 15.22 14.93 14.54
19.92 19.86 20.08 19.91 19.39

deviation parameter σ. Multiplicative noise can be seen as
an approximation of the image sensor response because the
noise level in the CCD and CMOS camera increases as the
luminance increases [5].
Proposition 7: In the case of speckle noise (multiplicative

noise) the effective noise variance νMSE can be estimated by
the Gaussian noise estimator: νNOLSE2

= ν, ν is given by
Eq. 39.

Table VI
PERFORMANCES OF SPECKLE NOISE FOR THE Office IMAGE: ν

CORRESPONDS TO NOLSE2 AND νMSE IS THE MEASURED NOISE
VARIANCE (THE MSE OF THE DIFFERENCE BETWEEN THE ORIGINAL
IMAGE AND ITS NOISY VERSION). THIS NOISE VARIANCE DOES NOT

INCLUDE THE UNKNOWN INITIAL NOISE OF THE IMAGE. ν (NOLSE2) IS
A RELIABLE ESTIMATOR AND s2 CORRESPONDS TO EQ 25(1D

ESTIMATOR).

103v 0 0.0005 0.001 0.005 0.01 0.05 0.1
νMSE 0 0.086 0.171 0.849 1.65 7.79 14.7
νMAD 0.008 0.073 0.111 0.359 0.636 2.56 4.74
νFNV E 0.026 0.100 0.164 0.669 1.23 5.66 10.5
νTY 0.026 0.096 0.158 0.639 1.17 5.39 9.96

νNOLSE2
0.020 0.097 0.176 0.807 1.57 7.79 14.5

s2NOLSE 0.315 0.391 0.469 1.08 1.85 7.90 14.5

Table VII
SPECKLE NOISE ESTIMATION FOR SELECTED NOISED REAL IMAGES WITH

SIMILAR NOISE LEVELS (νMSE ). THE NOISE PARAMETER IS ν = σ2 .

Image Barbara Boat House Lena Office
103v 0.0025 0.0029 0.0023 0.00285 0.005
νMSE 0.839 0.849 0.826 0.835 0.849
νMAD 1.798 1.064 0.825 0.964 0.359
νFNV E 4.265 1.047 0.884 1.010 0.669
νTY 1.382 0.533 0.745 0.746 0.639

NOLSE2 8.013 1.046 0.845 1.003 0.807

7

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2013.2282123

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Table VI shows the performance of NOLSE1 and
NOLSE2 for speckle noise. Except in cases of low noise
levels, in which the initial noise and/or certain edge points can
explain the small difference between the real noise (νMSE)
and that estimated by NOLSE2, the results are correct. Note
that MAD is not efficient because the noise level varies with
respect to the luminance level. For strong noise levels, the
edges become negligible, and NOLSE1 (s2) gives similar
results to NOLSE2 (ν). The other methods (FNV E, TY )
underestimate the noise level because they measure the low
amplitudes which is a problem in the case of multiplicative
noise. For moderate noise levels, table VII shows that the
estimation accuracy for all the proposed techniques depends
on the images. In textured images like Barbara, the noise
estimation is nearly impossible whatever the method. Figure 7

noise amplitude

noise distribution

fre
qu

en
cy

noise amplitude

measure distribution

fre
qu

en
cy

(a) (b)
Figure 7. Speckle noise distribution (σ2 = 0.01) in the House image. Left:
true noise distribution. Right: distribution of the measures: y1 (right part:
positive amplitudes; see Eq. 33) and y2 (left part: negative amplitudes; see
Eq. 34). νMSE = 0.0035, νMAD = 0.0028, s2 = 0.0036, ν = 0.0035.

presents an example of the speckle noise distribution (level
σ2 = 0.01) in the House image and the distribution obtained
from measures y1 and y2 defined in Eqs. 33 and 34. The
y1 measure corresponds to the right part of the distribution
(positive amplitudes) and the y2 measure corresponds to the
left part.

D. Salt-and-pepper noise

Proposition 8: In the case of salt-and-pepper noise with a
noise level d (%), the effective noise variance νMSE can be
estimated on the basis of the Gaussian noise estimator:

νI = κ.νγ (40)

where:





κ * 1.20

γ * 1.22

ν is given by Eq. 39
(41)

The coefficients are empirically deduced from experimental
tests on a constant image with a gray level equal to 0.5. The
estimator leads to ν = ν+ + ν− with ν+ = (ν1 + ν3) /4 and
ν− = (ν2 + ν4) /4. Defining νI = νI+ + νI− and developing
the Taylor expression of νI to first order around the mean ν/2

Table VIII
PERFORMANCE FOR THE SALT-AND-PEPPER NOISE (d DENSITY

PARAMETER) FOR THE Office IMAGE. νI CORRESPONDS TO NOLSE2

(EQ. 40), AND νMSE IS THE MEASURED NOISE VARIANCE (THE MSE ON
THE DIFFERENCE BETWEEN THE ORIGINAL IMAGE AND ITS NOISY

VERSION). νI IS A RELIABLE ESTIMATOR. νI+ AND νI− GIVE A GOOD
APPROXIMATION OF THE NOISE COMPONENTS FOR THE SALT AND PEPPER

IMPULSES, RESPECTIVELY.

d (%) 0 5 10 20 40
νMSE 0.000 0.018 0.036 0.071 0.143
νMAD 0.000 0.000 0.000 0.002 0.112
νFNV E 0.000 0.006 0.020 0.055 0.124
νTY 0.000 0.006 0.019 0.012 0.077
νI 0.000 0.018 0.038 0.079 0.146

νMSE+ 0.000 0.013 0.026 0.050 0.100
νMSE−

0.000 0.005 0.010 0.021 0.042
νI+ 0.000 0.013 0.029 0.055 0.093
νI− 0.000 0.004 0.010 0.023 0.053

Table IX
PERFORMANCE FOR THE SALT-AND-PEPPER NOISE (d DENSITY

PARAMETER) FOR SELECTED REAL IMAGES. νI CORRESPONDS TO
NOLSE2 (EQ. 40), AND νMSE IS THE MEASURED NOISE VARIANCE
(THE MSE ON THE DIFFERENCE BETWEEN THE ORIGINAL IMAGE AND

ITS NOISY VERSION). νI IS A RELIABLE ESTIMATOR. νI+ AND νI− GIVE
A GOOD APPROXIMATION OF THE NOISE COMPONENTS FOR THE SALT AND

PEPPER IMPULSES, RESPECTIVELY.

Image Barbara Boat House Lena Office
d (%) 10 10 10 10 10
νMSE 0.030 0.028 0.029 0.028 0.036
νMAD 0.004 0.001 0.000 0.000 0.000
νFNV E 0.026 0.019 0.019 0.019 0.020
νTY 0.006 0.003 0.003 0.003 0.019
νI 0.031 0.027 0.029 0.028 0.038

νMSE+ 0.016 0.014 0.011 0.014 0.026
νMSE−

0.014 0.015 0.018 0.014 0.010
νI+ 0.017 0.013 0.011 0.013 0.029
νI− 0.014 0.014 0.019 0.014 0.010

gives the following:

νI = κ. (ν+ + ν−)
γ

= κ
(ν
2
+
(
ν+ −

ν

2

)
+

ν

2
+
(
ν− −

ν

2

))γ

* κ

(
νγ

2
. (1− γ) + γνγ−1ν+

)

+κ

(
νγ

2
(1− γ) + γνγ−1ν−

)

We identify this expression with

νI = νI+ + νI− (42)

and it follows that
{
νI+ = κ

(
νγ

2 (1− γ) + γνγ−1ν+
)

νI− = κ
(
νγ

2 (1− γ) + γνγ−1ν−
) (43)

Table VIII presents variance estimates of the Office image.
The estimator νI gives satisfactory results. The second part of
the table shows the ability of the measures to provide a good
estimate of the positive (salt) and negative (pepper) impulses of
the noise. The estimate quality decreases as the noise density
increases because the 2D algorithm cannot always correctly
separate the positive and negative impulses that are similar
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to each other. The MAD is again not as effective on this
nonlinear (and non-additive) noise. Table IX confirms the
reliability of NOLSE whatever the image.

E. Poisson noise
This noise distribution typically models shot noise in a

sensor in which the time between photon arrivals is governed
by Poisson statistics [4], [8]. Defining the expected number of
occurrences by the integer λ (e.g., proportional to the number
of electrons created during photon acquisition), the probability
of the noise corresponds to observing the number n instead of
λ at the pixel k:

Pλk
(n) =

λne−λ

n!
(44)

The Poisson distribution is characterized by E[n] = λ and
V ar[n] = λ. Table X summarizes selected results on synthetic
images, and Table XI presents tests on real images.
Proposition 9: In the case of Poisson noise, the variance λ

can be estimated at first approximation by the Gaussian noise
estimator : λNOLSE2

= ν (ν is given by Eq. 39)

Table X
EXAMPLES OF POISSON NOISE ESTIMATION FOR A SYNTHETIC IMAGE

COMPOSED OF TWO UNIFORM AREAS (SIZE 128×64) WITH GRAY LEVELS
L1 AND L2 . IT FOLLOWS THAT THE POISSON NOISE IS GENERATED

ACCORDING TO THE TWO PARAMETERS λ1 = L1 AND λ2 = L2 .

λ1

λ2
measured 102

0
100
10

100
30

101
59

99
102

λ = (λ1 + λ2)/2 51 55 65 80 100
λMAD 0 27 55 79 108
λFNV E 26 45 62 83 109
λTY 24 15 44 78 103

λNOLSE2
48 53 64 82 103

Table XI
POISSON NOISE ESTIMATION FOR SELECTED REAL IMAGES. THE NOISY

IMAGE VERSION IS IP .

Image Barbara Boat House Lena Office
MSE(Ip − I) 117 130 138 124 91

MAD 204 141 140 141 47
FNV E 358 144 142 138 72
TY 201 101 125 117 68

NOLSE2 522 140 137 131 83

The results show the ability of NOLSE2 to measure the
variance of the Poisson distribution. Because a distribution
measure is available, the noise can be estimated by regions
in the image (the variance varies according to the signal
amplitude) at the cost of accuracy. All the techniques fail to
estimate the Poisson noise on heavily textured images like
Barbara.

The perspective study on multiplicative noise will consider
the distribution analysis and its moments.

F. Advantages and limitations of the approach
The different studies in the above sections highlight the

ability of the approach to estimate the noise level for various
noise distributions and models (additive and multiplicative).

Unlike many of the approaches that are based on low am-
plitudes to avoid edge information, the NOLSE approach
attempts to separate the noise from the edge information
regardless of the edge amplitude. This principle allows for
correct noise estimation even in multiplicative models in which
the noise level increases with the edge amplitude. Concerning
the limitations, because the approach is based on the step edge
model, measuring the local peak information at the edge is
therefore considered as noise and limits the universality of
the approach. The 2D extension remains directional because
it performs the derivatives in the two directions. Lines and
textures in any direction can therefore be interpreted par-
tially or completely as noise components. Figure 8 illustrates
these limitations in which the fine texture (1 pixel width)
is interpreted as noise. Other 2D schemes can be defined,

(a) (b)
Figure 8. Example of the limitations of the approach for the image “Barbara”
(size 256×256, normalized to 1 before addition of noise). (a) noisy image
(GWN σ2 = 0.001); (b) measures of y1. The highlighted fine texture (1-
pixel width) areas are detected by the y1 estimator.

for example, by combining the 1D detection of positive and
negative peaks. However, while the selectivity against edge
points increases, the detection decreases and the variance
of the estimator increases. In contrast, the approach permits
the definition of bi-directional derivatives (by including the
diagonal directions). Further work involving applications to
pattern analysis, particularly in edge detection for specific
image topologies and texture analysis is needed to validate
this generalization.

VI. CONCLUSION

This work introduces a method for estimating the main
parameters of a noise distribution. Using this method, it is
possible to estimate the noise distribution from the measured
distribution. The method is defined in the discrete domain
and is based on a step model signal; however, it is also
valid for more realistic extended profiles. The model does
not make assumptions regarding the distribution of the noise
and is able to measure additive noise as well as multiplicative
noise, salt-and-pepper noise and Poisson noise, which proves
that the approach described by the method is not limited to
additive noise models. To estimate non-additive noise, it is not
necessary to transform the image; on the contrary, in order
to deduce the noise parameter it is sufficient to know the
correct estimator. The asymmetry of the noise distribution can
be accurately estimated if the noise distribution is not dense,
as in the case of salt-and-pepper noise. The complexity of the
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algorithm is low, and its implementation should not present
difficulties in any computing language. Additionally, it can be
integrated into hardware camera circuits for real-time systems.

However, the approach suffers from certain limitations. It
does not completely eliminate the edge points in 2D because
it is sensitive to fine textures (1D pixel width), and this seems
to limit the accuracy of NOLSE2 in the case of natural noise.
The theoretical pdf is not easy to calculate for any noise
distribution; however, numerical solutions can be found.

The perspectives offered by this approach are numerous.
We are currently working on a refined noise estimation
for GWN based on its pdf approximation. Further work is
required to extend the applications. The study of camera
models using several noise distributions particularly the most
frequently encountered Poisson distribution [5] is in progress.
The generalization of the polarized derivatives to the bi-
directional derivative has been introduced. Applications to
texture analysis, edge detection (edge detection can be also
used to refine the noise estimate) and analysis of specific
topology (e.g., images from catadioptric systems) and 3D
images will be considered. Finally, it may be of interest to
define noise measures for other signal models and to focus on
local noise estimation.
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