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Regularization Preserving Localization
of Close Edges

Olivier Laligant, Frédéric Truchetet, and Fabrice Mériaudeau

Abstract—In this letter, we address the problem of the influence
of neighbor edges and their effect on the edge delocalization while
extracting a neighbor contour by a derivative approach. The prop-
erties to be fulfilled by the regularization operators to minimize
or suppress this side effect are deduced, and the best detectors are
pointed out. The study is carried out in 1-D for discrete signal. We
show that among the derivative filters, one of them can correctly
detect our model edges without being influenced by a neighboring
transition, whatever their separation distance is and their respec-
tive amplitude is. A model of contour and close transitions is pre-
sented and used throughout this letter. The noise effect on the edge
delocalization is recalled through one of the Canny criteria. Dif-
ferent derivative filters are applied onto synthetic images, and their
performances are compared.

Index Terms—Edge detection, edge localization, edge model,
neighbor edge, regularization filter.

I. INTRODUCTION

SIGNAL or image regularization is a crucial stage in the in-
terpretation process and especially in all “high-pass” pro-

cessing like edge detection [1]. Some work dealing with this
topic has been conducted proposing solutions to preserve edge
shape [2] and localization while regularizing in noisy images
[3]–[6]. Our work is focused on derivative contour approach.
This is a quite challenging task, and in most classical edge de-
tection algorithms, some delocalization occurs when edges are
close one to the other, which is very common in real images.
It is this particular point that is studied in this letter. How does
the regularization matter on edge localization when taking into
account the neighbor edges? Can two close contours be sepa-
rately detected without any delocalization due to the regulariza-
tion filter? An iterative solution was proposed by Shen et al. [7].
Their solution first detects coarse contours; then, by including
the neighborhood, the zero transitions associated with their am-
plitude, an accurate solution is reached. We herein present a
single-pass filtering that does not affect the contour localization,
no matter the influence of the neighbor contour. Dimensional
control, image correspondence, for middle range signal-to-noise
ratio (SNR) images (weak additive noise) are among the appli-
cations that could benefit from this filtering.

Micheli et al. [8] showed that, on weakly noisy images,
because of the filter sampling, the shape of narrow-width filters
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Fig. 1. Discrete model with two steps (a < 0).

did not affect the result. We are here presenting a discrete
approach that shows the importance of the filter shape while
taking into account the mutual influence of the two contours.
Finally, Canny’s localization criterion [9]–[12] with noise is
valid. Demigny criterion in discrete domain is recalled [13].

The first part presents the classical contour model onto which
a neighbor contour is added. This situation leads to two con-
figurations, (additive influence and subtractive influence), with
each of them creating mutual influence between the two con-
tours. For each configuration, the properties required by the
filter to avoid delocalization due to mutual influence of the con-
tours are expressed. These properties are studied for the major
well-known derivative operators. Finally, the 2-D extension is
presented through a simple example for two regularization fil-
ters, among which only one possesses the right properties re-
garding the non-delocalization by adjacent contour.

II. DEFINITIONS AND NOTATIONS

A. Two Steps Edge Model

A simple model for two neighbor edges is proposed; two
Heaviside steps separated by a distance corrupted by a
Gaussian white additive noise

(1)

where is Heaviside function, if , else ;
is the amplitude of the step at the current point; is the

variable amplitude of the neighbor step localized at a distance
from the current point; and is a stochastic variable denoting

normalized amplitude of a Gaussian white noise of 0 mean and
standard deviation of 1 ( is noise standard deviation). Fig. 1
illustrates the two steps edge discrete model without noise.

B. Edge Localization by Derivative Approach

The localization of a luminance transition modeled by a dis-
crete signal can be obtained by detecting the minimum (or the
maximum) of the discrete derivative of . As it is well known,
differentiating a discrete signal is an ill-posed problem and an
estimate must be performed from a regularized version of . If
the impulse response of the regularization filter is denoted by

, the regularized version of , denoted by , can be written as
. The derivative of is given by

(2)
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Fig. 2. (a) Discrete signal with one step. (b) Regularized derivative estimator.
(c) Estimate of the derivative (denoted also as h).

where is the derivative of . The half-width of the impulse
response will be further denoted by . The numerical derivative
is defined by

(3)

This definition is consistent with (2). Fig. 2 shows a discrete
signal with one step, the regularized derivative estimator , and
the estimate of the derivative . It is to be noted that we choose
to define all the derivative filters without 0 at center point so
that only one maximum (or minimum) is detected for a stepwise
edge. Therefore, the regularizing filter is even (null phase).

C. Edge Localization Equation

The regularized derivative of the signal defined in (1) can
be estimated by .
Three parts are pointed out that model in a simple but complete
way the detection features of image luminance edges. The first
term is the expected output; the second one is the neighbor edge
bearing; and the third one is the unavoidable noise contribution.
The main purposes of this letter are studying the consequences
of the last two terms on the first one and deducing the proper-
ties of the regularization filter minimizing those bearing. We
conclude this part in the next section with a definition about the
detection and localization of an edge.

D. Edge Presence and Localization

A transition (edge) of amplitude does exist and is
localized at point of abscissa if the derivative signal has the
following properties:

and
(4)

These relations are quite natural, and they correspond to the
definition of a local maximum for a positive transition. However,
as the signal is embedded in noise, we will have to introduce a
threshold in the last (4).

III. PROPERTIES OF THE REGULARIZING OPERATOR

The regularization aims at giving the best possible represen-
tation of the signal whatever the corrupting noise. In the case of
luminance transitions (edges), preserving the localization is the
most important point.

A. Under Noise Influence: ,

Noise can influence transition localization in the regularized
signal . Extrema of the derivative give the positions of these
transitions. Actually, as noise corrupts signal and its derivative,
it may delocalize the detection point. The results in this case are

well known, and we recall the equation that can be considered as
a discrete version of the Canny’s localization criterion [14] for
a noise of unitary variance: . This
criterion means that variation around maximum of detection has
to be the largest possible, while the relative noise variation must
stay at the lowest possible level. Doing that allows to limit the
influence of the noise on localization.

B. Under the Influence of a Close-By Transition:
,

The response to a transition of amplitude standing next to
a close-by transition is now to be considered. Noise influence
does not have to be taken into account, for the previous section
has dealt with this kind of perturbation. Transition of amplitude

being localized at in the image, it is the influence
of the neighbor transition on the localization of the detected
edge that is under study.

1) Subtractive Influence : Subtractive influence is
due to a neighbor edge with amplitude of opposite sign:

. As this influence is subtractive, it results in
a decrease of the response amplitude, and it tends to delocalize
this response. Derivative at gives the delocalization sign:

. Derivative being negative, the maximum cor-
responding to the detected edge occurs at . Therefore,
generally speaking, distance between consecutive opposite de-
tected edges tends to be enlarged due to this subtractive influ-
ence. Criteria given by (4) for an edge of amplitude to be
existing at can be simplified as follows:

(5)

leading to , where

. While the first relation in (5) gives the condition for
edge localization at , the second has to be verified for the
transition to exist at . Equation (5) can be explained under
the following form [see also Fig. 2 and the discrete definition
of the derivative in (3)]:

non-delocalization condition
existence condition.

(6)

Writing and , it
comes

(7)

The non-delocalization condition must be fulfilled as long as
the transition is detected (existence condition verified, otherwise
delocalization always occurs). It follows that if one of the above-
mentioned conditions is not verified, it is the existing one that is
to be overcome to avoid any delocalization problem. Following
this strategy leads to a situation where all the detected edges
are well localized. Therefore, only the limit condition has to be
tested : .

Finally, whatever , regularization filter will not de-
localize the transition if

(8)
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with . Fig. 2(c) represents an example
of (discrete) definition for .

2) Additive Influence : Additive influence is due
to a neighbor edge with amplitude of the same sign:

. As this influence is additive, it results in an
increase of the response amplitude, and it tends to delocalize
this response. Derivative at gives the delocalization sign:

. The amplitude at is always positive, and
the maximum response is moved toward . Therefore, gen-
erally speaking, distance between consecutive detected edges,
stairs figuring, tends to be shrunk, due to this additive influence.
No edge detection should occur as soon as a “non-delocalization
condition” is invalidated [no maximum for ]. If only
one extremum (a maximum in the specific case) is assumed to
exist for each transition, will be detected at (with a
close-by transition at distance ) if or if

or even

(9)

Knowing that and noting , (9) can
finally be written as . This condition is manda-
tory but not sufficient because delocalization or non-detection
can occur for a closer transition. This condition has to be pro-
gressively completed as is decreasing ( being the min-
imum value, closer edges cannot be resolved):

A regularizing filter fulfilling this
condition is monotonically decreasing along axis . If, in an-
other situation, is too small, the edge , being not detected,
will not be delocalized. As the response will be monotonically
decreasing from up to 0, the transition of amplitude oc-
curring at will be the only one to be detected. Therefore, the
mandatory and sufficient condition for detecting without delo-
calizing an edge under additive influence is as follows:

(10)

If this condition is verified, the edges are either detected and
well localized or not detected.

IV. OPTIMAL SOLUTIONS

Numerous studies have been already conducted to provide
optimal solutions with respect to precise criteria (localization,
SNR, multiple responses) dealing with edge detection in contin-
uous or discrete image processing. We propose, in the following
part, the optimal filters fulfilling the above-described criteria in
discrete domain: edge localization under noise influence (results
already known), edge localization under additive and subtractive
influences (new results). A conclusion summarizing in a table
the properties of various existing regularizing filters is finally
provided.

A. Localization Against Noise

Filters minimizing denominator in the Canny’s discrete cri-
terion [9], [14] have by-parts constant and identical (without con-
sidering sign) derivatives. Filter impulse response can be de-
composed into straight segments having the same slope (without
considering sign). The criterion is then optimally verified by a
“triangle function” as in Fig. 3. This function is not equal to
zero at for the step response to have only one maximum.

Fig. 3. Impulse responses of derivative filters used to compare localization
properties. Filter scale parameters have been chosen to keep the same non-de-
tection limit (d = 10) under additive influence.

TABLE I
PROPERTIES OF CLASSICAL FILTERS

B. Localization Against Subtractive Influence

As it is easy to verify, exponential function is a solution of

(8): . This solution is optimal for it verifies

the equality boundary case. Those discrete filters are formally
identical to the continuous one defined by Shen and Castan [15].
Cord et al. [16] observed that the Shen and Castan filter never
delocalizes two close edges in subtractive influence. Filters of
higher decreasing rate are of no theoretical interest.

C. Localization Against Additive Influence

In order to fulfill (10), the derivative filter (derivative of reg-
ularizing filter) has to be strictly monotonically decreasing be-
tween and . Neither the Canny-Deriche [17]
detector nor the classical Gaussian derivative does verify this
condition. However, the “triangle filter” and, more obviously,
the exponential one fulfill the non-delocalization criterion under
additive influence.

D. Examples

The properties of some edge detector filters from various au-
thors [9], [14], [15], [17] are summarized in Table I. Fig. 4 illus-
trates the delocalization phenomena, varying, under subtrac-
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Fig. 4. Images illustrating a wide range of values for d (a = �A ) in (a) sub-
tractive influence and (b) additive influence. Detection by Canny–Deriche and
Gaussian derivatives in (c, d) subtractive influence and (e, f) additive influence.

Fig. 5. (Left) Original image. (Center) Detection by Shen and Castan filter
(s = 0:4). (Right) Detection by Gaussian (derivative) filter (� = 2:2). Same
SNR, Threshold = 2. The last image presents clearly edge delocalization.

tive and additive influence for edge detectors of Canny–Deriche
and Gaussian derivative families. Finally, if subtractive influ-
ence is not an issue, then the “triangle filter” is the optimal so-
lution according to noise-localization constraint.

E. Application to Real Images

Fig. 5 shows contour delocalization of the desk image
processed with the Shen and Castan filter as well as with the
Gaussian derivative filter. One used the classical 1-D sepa-
ration approach where derivation occurs along the columns
and smoothing (regularization) along the rows and vice-versa;
then maxima localization followed by a threshold procedure is
performed, resulting on the edge image. Images clearly show
that the Gaussian filter is not robust against mutual influence
and that contours are slightly moved away (the filters have the
same SNR). The results obtained are rigorous and exact for
vertical or horizontal sharp edges. However, for tilted edges,
they are only approximate, although they lead to results of very
good quality and better than those obtained if the introduced
criteria are not respected. In the case of inclined contours, the
regularization filter (applied according to the direction perpen-
dicular to that of the detection filter) transforms sharp contours
into ramp edges whose extent is function of the filter and of
the orientation. This phenomenon can be taken into account
according to the introduced method. It is, however, clear that the
results will be more difficult to interpret and to implement in an
effective algorithm. The best solution undoubtedly consists in
processing each contour according to its direction (locally given
initially). The problem of ramp-like edges is analogous, and it
is not taken into account in this letter. However, in accordance
with previously presented results [18], the optimum detection
filter will be parameterized by the ramp-width, and thus, only
one filter will never be optimum for all the ramp-widths and
possible orientations of contours.

V. CONCLUSION

This letter highlights in a discrete approach the importance
of the filter shape on weakly noisy images. Generally speaking,
whatever the influence of neighbor edges (additive or subtrac-
tive), the Shen–Castan detector will be the only one to keep the

detected edges at the right place. Clearly, this property can be
of prime importance in many artificial vision applications, such
as dimensional control, for instance.

It is also to be noted that in any real optical device, the PSF
limits the bandwidth and can be considered as an intrinsic reg-
ularization filter. This PSF is very often modeled, at the first
order, by a Gaussian (or a for a simple hole); as demon-
strated in the previous parts, it can induce distortions on close by
edge profiles resulting from delocalization of transition under
additive or subtractive influence. In this letter, edge detectors
able to localize correctly and detect edges even when they ap-
pear closely, as in angles, for instance, have been pointed out.
Even if in the way of searching for universal ideal edge detec-
tors, many other important criteria must be taken into account
(sensibility to signal-over-noise ratio, multiple responses sup-
pression, isotropic detection, etc.), the practical consequences
for real image processing of the problem addressed in this letter
deserve this special attention.

Finally, non-delocalization is preserved for high-order deriva-
tives, which are useful for zero crossing detection.
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