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1 Introduction egy. Section 2 summarizes the results of the theory of Mar-
This research was carried out within the framework of a KoV random fields model and the principle of block match-

medical application, where we are particularly interested in Ing _applled_ to motion - estimation. Co_mpone'nts of the
the movement of the eyelid. This area is not entirely struc- Multiresolution strategy are explained in detail as a pre-
tured, and the speed of the eyelid is not homogenous. Theamble to the algorithm in Sec. 3. In the last section a few
motion characterization must be sufficiently accurate to results are presented.

take into account these two properties. The movement ob- ) )

servation is done on a sequence of gray level images. In2 Motion Estimate

addition, the movements present great differences in ampli- .

tude, and the low acquisitl?on rate ?nakes the motion estirr?a—z'1 Markov Random Fields
tion of large amplitudes difficult. A motion is considered as In this_section, some results of Markov random fields
a motion of large amplitude when it exceeds three or four (MRFS)’™® applied to motion estimation are presented.
pixels per frame. There are a lot of techniques of movement These results are obtained from the Gibbs field model and
estimation, but generally they are classified in three main Hammersley Clifford theorem. The central assumption is
categories: differential  methotd (methods of Horn,  that the luminance of a pixel is constant in two successive
Schunk, and Nagglmapping methods¢' (block matching, images, altohough some works takg into account variation
and transform metho@§ (Gabor transform, Fourier trans- luminance’® Therefore, MRF modeling is equivalent to an
form). The first methods give good results, provided that €nergy function, and the motion estimation problem is re-
only movements of small amplitude are considered. The duced to the minimization of this energy function.

second techniques operate correctly on structured element&lassically, the energy function is composed of two parts.
and motions of different amplitudes, nevertheless the pre- 1 he first one is the data energy:

cision of this process is not a subpixel one. The last meth- ¢ 5

ods are exploitable only for elementary movements. In our [f(s+ps,t+dt)—f(s,1)]%

case, movements have various amplitudes. So a simple and . . . .
efficient method to compute motion estimation for a large Wheref is an image sequence. The latter is the regulariza-
range of speed is proposed. The complement of differential i0" €nergy, based on the Tikhonov regularization model
methods and block matching allows us to characterize all YSUally used for motion estimation:

the movements in image sequences. The cooperation ofV . N allatat (12

these two methods is achieved by a multiresolution strat- (.5 ,p.p,)—BHps pS,-” '
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whereV() is the potential functions is the current sites; The total energy function is equal to:
is a set of sites in the neighborhood gfand p. is the
motion vector on the site at the timet. Its components are ‘ )
us andvg. B is the parameter of regularization, varying E(S:)=[f(s+ps,t+dt)—f(s,1)]
from zero to infinity.
Concerning the choice g8, small values lead to an ac- + Bllpt—pt |2,
curate solution for image data, but results are sensitive to {s:sj}eCy :
noise. On the other hand, high value implies smooth solu-
tion, but results do not match the luminance data. Never- ) ]
theless, detection of movement of subpixel amplitude re- WhereC, is the second order clique.
quires a small value fo. The best compromise between ~ The minimum energy function is obtained when the de-
detection of the small movements of the eyelid and elimi- rivative fromug andv is equal to zero, assuming that only
nation of the noise of the acquisition system has to be a small displacement is taken into account.
found. The solution isps= (ug,vs) with

—2(21,F+ 255y cc,~ 2BUs) X[(F,)*+4BT+ (2 fyf + 355 cc,~2Bvs) X (2 )

u =
* AL(F ) +4BIX[(f)°+4B]—(21,f))°
—2(2f,F+ S5 5 cc, = 2Bus ) X[(F)?+4B1+ (2 ff + 3155, cc,~ 2Bus ) X (2, f,)
’s” A[(T) 2+ 4BIX[(T,) 2+ 48] - (21,f,)?
[
whereug andv are the components qff and|, are the average pixel luminances of blocks, respec-
tively, in the previous imagé and in the current imag
fy=f(x+dxy,t) = f(x,y,1); is the subset of pixels of the block.
The search for the reference block is done within a win-
fy=f(x,y,+dy,t) - f(x,y,1); dow whose dimensions are selected according to the de-
tected displacement between the current image and refer-
f=f(x,y,t+1)—f(x,y,t). ence image. The strategies of search are numerous; we can

guote the binary searching, searching in spiral, or the hier-

The expression ops(Us,v¢) is a function of space lumi-  archical searching.

nance, temporal gradients, and the speed of the neighbors 1€ block matching allows the estimation of great am-
of the considered pixel. The value pf(us, v.) is obtained plitude movement if initialization and qorrelatlon criterion
by an iterative process that converges toward the final ﬁﬁsf%réﬁztlyeg;%?eg mg{i%?]vzg]t:}?ug'eze of the search are
value. The estimation of movement by MRF is finally re- P '

duced toug and v computing. All small movements are 3 Method

estimated with this_ simple calculation. Unfortunately, _this It was shown in a preceding section that estimation of the
method leads to incoherent results for great amplitude optical flow by MRFs allows only a detection of small
movements. movements of amplitude less than 3 pixels, and that block
matching detects movements of greater amplitudes if the
i rocess of search is well initialized. A multiresolution ap-
2:2 B/O_Ck Match/ng Pr_ocess _ Eroach is used to merge these two methBdsIndeed, if a °
The estimation of motion by block matchihgonsists  mgvement is significant on scale (iitial image, it will
(choosing a block in an imageén finding the best similar  pecome a movement of low amplitude in scales of coarser
block with respect to criterion in another reference image. resolution. The MRF is used to characterize this small dis-
The displacement vector is deduced from the positions of pjacement, and motion tracking across the scale is achieved
the two blocks. The criterion of similarity between two by BMP. BMP initialization is obtained with MRF. This
blocks is generally the quadratic error or difference in ab- section is organized as follows. First, the pyramidal frame-
solute value. In our case, the criterion is defined as follow- work is described, then the propagation of movement esti-
Ing: mation across scales and BMP parameters are exposed. Fi-
nally our algorithm is presented.

C= % [(1i= 1) = (1= 1), 3.1 Components of Pyramidal Approach
3.1.1 Pyramid construction

wherel; andl, are the pixel luminances of blocks, respec- pyramid construction is an efficient alternative to obtaining
tively, in the previous image and in the current imabg. an adaptable motion estimate algorithm. Many multiresolu-
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Fig. 2 (a) Movement pyramid creation: level O corresponds to the
searched result. The algorithm begins at scale J. (b) Movement
a/ b/ propagation: relation between pixels at scale j+1 and pixels at
scale j. New pixels at scale j are initialized by the interpolation of the
Fig. 1 (a) Image pyramid construction. (b) Scale j+1 is obtained neighboring values at scale j+1 (as illustrated).

from scale j. Scale jis composed of 16 pixels of vr. The four black
reference mark pixels @ (p even and g even) represent the scale j
+1.

3.1.3 Parameters of block matching

tion scheme¥—1® have been developed over the last few As previously shown, BMP consists in linking a block of an

years. These methods are mainly optimized in regard to 'Mage to anoth.er one in gnother image. In this V\_/ork, the
details needed to obtain the scafeom the scalg +1. We chose_n bI_oc_k Slze 1s 23 F"X‘?'S- The sear(_:h dlrectlon_for
can quote criteria like entropy and aliasing. In this work, no Matching is initialized at scaleby propagating the motion
study has been conducted to choose the best multiresolutio€ctor estimated by MRF at scajer 1. The size of the
method. However, precaution to limit aliasing has been search area is hlerarthcal and depend; on the motion vec-
taken by smooth filtering. The construction of the image tor determined at scalet 1. Indeed, if a displacement of
pyramid is a fine to coarse process. A pixel at s¢atd is pixels at scalg +1 is detected, displacement on the upper
simply the mean of its 4-neighborhood at scal€he scale scale will be of 2xq pixels. As defined before, the corre-
imagej+1 of the pyramid is obtained by subsampling. If spondence criterion is the mean difference of luminance
mxm is the number of pixels of the image 0, the size of Pixel to pixel between the two blocks. The block minimiz-

the imaad is (m/2)) X (m/2)) (Fig. 1). An image at resolu- g this differencga is selected. Figure '3 represents the way
tion | wilglqbe éenot)edl(- ) (Fig. 1 g to track the motion across scales with BMiR this ex-
|-

ample only three scales are represented

The size of the search area is defined by the displace-
R . ) ~ment vector estimated on the coarser scale. This area is
The movement estimation is carried out in a coarse to fine centered on the pixel whose position is calculated with in-
approacht as shown in Fig. @). The difficulty of the  formation from the lower scale. The size of the interest area
coarse to fine approach is associating information points of js four times the value found on the coarse scale.
scalej+1 to scalej. Indeed, we need to initialize move-
ment imagg on the base of movement estimation at scale
j+ 1. Figure Zb) shows how motion vectors of scglare 3.2 Algorithm
obtained from the motion vectors of SCQ'|$ 1. Each mo- Let there be a tempora| sequence Df‘|‘(l) images
tion vector for the pixels illustrated in black on scalés
two times the motion vector at scaje-1. All the other {IO,Il,...,Ik,...}ke[om,
points at scalg¢ are deduced from linear combinations, as
shown in Fig. 2. Before presenting the algorithm, let us where k denotes the time. First of all, a multiresolution

3.1.2 Propagation of movement estimation

clarify the parameters of BMP. pyramid of (P*~%,P¥),_ (o, is built following the process
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Fig. 3 Process of block matching across scales. In this example MRF initializes at scale 2. Propaga-
tion produces a vector magnified two times at scale 1. BMP improves accuracy of this vector at scale
1 and then at scale 0.
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Control on an error
due to noise

Control on a
propagating error

b/

Fig. 4 Interest of control: (a) propagation of information without control, the error is propagated and (b)
propagation of information with control, to eliminate error. The gray pixel is where motion is detected
by the Markov process. @ pixel is where false motion due to noise is detected by MRF. The gray
square set of pixels is where block matching is applied, the B set of pixels is where block matching is

applied, and the O set of pixels is forced to 0.

described in Sec. 3.1.1. All calculations will be carried out shown, then its behavior on movements of various ampli-

on a pair of successive pyramids note?(*,P¥) where:

P ={IgR LI T and PR={10N 1K1K

with J+ 1 the number of scales. The task of the movement

estimation algorithm is to build gradually the pyramid of
movement:

{(U%5,VE), (U2 VK ), (UK, VR,

where UX;,VK,) is the expected movement vector image.
The algorithm is organized as following:

tudes is illustrated. A comparison between the results ob-
tained with the cooperative method and the results obtained
with MRF or BMP applied separately is presented. Finally,
some quantitative movement estimates are presented.

4.1 Noise Effect

Real images are corrupted by the noise of the acquisition
system. At first, the noise of the acquisition system is esti-
mated. This system includes optic, CCD, and electronic.
This noise is classically modelized by a Gaussian distribu-
tion, and the estimation of the mean variance is achieved
from the image sequence of homogeneous luminance with
different gray levels. Measure gives a value of 3 for the

1. For each pyramid image, movement estimation is yariance. Subsequently, the robustness of the algorithm is

processed by MRF on the coarsest scalg (1,5
and produces vector imagef;_;,V¥;_,).

2. Vectors are propagated on the next finer scale, as ex-

plained in Sec. 3.1.2 to initializeU; , VX)) with |
=j—-1

evaluated on noisy synthetic images. This test permits the
adjustment of parameters, mainsy

A pair of images extracted from the test sequence is
shown in Fig. 7. The sequence of images represents an
homogeneous square moving in translation on an homoge-
neous backgroun@whose luminance is different from the

3. At the finer scale, two configurations are possible to square luminange The movement is a translation of one

refine U¥;,V¥): the initial vector is null, and in this

pixel to the right according to the horizontal axis. The re-

case the mOtiOI’l vector iS determined by MRF, or a Su|ts are Consigned in F|g 8.

nonnull initial vector is found and used to initialize

The results in Fig. &) show that the detection of move-

the BMP whose parameters are defined in Sec. 3.1.3.ment is correct. For a noisy sequence with Gaussian noise

4. The algorithm is iterated from step 2 until scale 0.
The final result is the vector imag&(,V¥).

To improve the process, a modification in step 3 is intro-

duced. If motion is detected for a given point at scple
+1, the initial vectors at scalg will not be null in the

of variance similar to the noise of acquisition system, some

vectors present false directions and wrong norms. Obvi-

ously, the overall movement estimation is satisfac{éig.
8(b)]. As noise variance increases, the result is degrading

4-neighborhood. Consequently, all these points are checked !
to know if they correspond to real movement. So, before
estimation by the block matching, the propagation of move- = 8
ment is refined by MRF. If a point does not correspond to
movement, its initialization is forced to 0. Figure 4 illus-

scale 0 scale 0

trates the utility of control before the application of block %% sealal g seale |

matching on the same example. Figure 5 shows an example % scale2 L scale2

of two image pyramids where the complement of MRF and ™

BMP is clear. The algorithm is summarized in Fig. 6. = scale3 m  scaled
al/ b/

4 Some Experimental Results
. Fig. 5 Contributions of (a) the Markovian approach and (b) of block
Results are presented for synthetic and real sequences. Ifatching. The white points show the pixels where motion is de-

particular, the robustness of the method against the noise isected.
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Pyramid 1 {I, I, ...,I;}* = P
Pyramid 2 {I,, I, ... ,[;}*' = p*!

v

MREF on
(ij, Ijk'l)=> (Ujk, ij)

Propagation of
(U+1,V541) on scale j

false

On each pixe
of (UK, V), motioy

A 4

Motion control by MRF
MRF on (I 1)
on (ij, Ijk-l) +BMP

< ]

(U, V{9 refined

false

k=

right

Fig. 6 Algorithm for motion estimate. Notation: the /image of the sequence, (U]’f,v’f) motion vector at
time k and scale j.

and it becomes difficult to localize good vectors among (corresponding to various spe¢d3hen this disk in uni-
wrong oneg Fig. 8c)]. We still recognize the dominating form rotation(angular velocity#/3 rd/9 has been shot at 25
movement, but it seems unreasonable to calculate the normmages/s.
of the motion vectors to determine the speed of the object.  Figure 9c¢) shows that norm of vectors decreases near
Experiments and settings have been conducted and showhe center of the disk. In Fig. 10, the contribution of MRF
that the algorithm will not be sensitive to noise added by and BMP across the scale is clearly shown. On each scale
the acquisition system. MRF allows the detection of small displacements, and
BMP tracks the movements that are detected by MRF on
) the coarser scale.
4.2 Speed Estimate Movements with large amplitude are detected in the
An homogeneous disk with a colored sector has been de-coarsest scales. As the amplitude of movement decreases
signed to study the behavior of our algorithm for move- (near the center of the digkhe estimate is initialized at the
ments of various amplitudes along the image sequencefinest scales. The efficiency of our algorithm is evaluated

movement

Image i Image i+1

Fig. 7 Two successive images of the sequence.
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a/ b/ c/

Fig. 8 Displacement vectors (a) on the initial sequence without noise, (b) on the sequence with noise
(noise variance=4), and (c) on the sequence with noise (noise variance=9).

Study For the visibility, one vector out of
. four vectors is shown.
window
| —p
Image i-1 Image i
al/ b/ c/ d/

Fig. 9 (a) and (b) Pair of images extracted from the sequence, and (c), (d) the displacement vector
field associated.

scale 0 scale 0

scale 1 scale 1

—
|

scale 2 ” scale 2
! scale 3 ' scale 3

a/ b/

Fig. 10 Contribution at different scales of (a) the Markovian approach, and (b) block matching. The
white points show pixels over which motion is detected (video rate: 25 images/s).
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--theoretical
angular speed

—— experimental
angular speed

angular speed (pixels/s)

radius (pixels)

Fig. 11 Comparison between theoretical and experimental angular
speed. The curve is composed of two parts corresponding to the
Markov method and the block matching process. The speed in-
creases by 1 pixel/s when the radius increases by 23 pixels. Motion
estimation by Markov random fields is subpixel, consequently the
experimental curve is similar to the theoretical one. The motion es-
timation using the block matching process is constant at intervals of
23 pixels, because the block matching process has a resolution of
one pixel (video rate: 25 images/s).
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Fig. 12 Comparison between theoretical and experimental angular
speed. The MRF results are similar to the theoretical ones only for
small displacement. Thus the difference between the two curves is
important.
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Fig. 13 Comparison between theoretical and experimental angular
speed. The BMP cannot provide estimation for motion slower than
25 pixels/s. The curve for the BMP is step-like, but the estimate is
close to the theoretical angular speed.

image i-1 image i result

Fig. 14 Images and results for voluntary eyelid closure. For visibil-
ity, only one vector out of four is shown. Horizontal aliasing is due to
interlacing.

using the comparison between experimental and theoretical
angular speedg-ig. 11).

4.3 Comparison of Results Obtained with Different
Methods

In the last section, the previous examfdedisk in uniform
rotation is used to show the efficiency of the MRF and
BMP cooperation. The cooperative method is compared to
the MRF or BMP method applied separately.

Figure 12 presents theoretical and MRF results. The
MRF method gives good results only for small displace-
ments. Motion amplitudes greater than two or three pixels
per image lead to unstable estimation; the deterministic al-
gorithm used in this approach can converge toward a global
minimum only when dealing with small movements.

Figure 13 illustrates theoretical and BMP results. The
step-like shape is due to the one pixel resolution linked to
the fact that BMP cannot provide an estimation for motion
slower than 25 pixels/évideo rate is 25 images9/sBut the
estimate stays close to the theoretical angular speed.

Figure 11 presents the MRF and BMP cooperation. This
method takes the advantage of each process. For small dis-
placements, the MRF process is used for its greater accu-
racy. For large displacements BMP is used for its capability
to detect large movement with a correct and stable estimate.

4.4 Examples of Application on a Deformable Area

Figure 14 presents two pairs of images showing the volun-
tary eyelid closure. The algorithm seems reliable for the
determination of the direction and norm of the motion vec-
tors. Some estimation errors are due to noise and aliasing,
and they will be eliminated in future experimentation with

a full frame camera. A solution to cope with the noise prob-
lem would be to increase the value @f which would
imply the disappearance of false vectors. However, as
specified in Sec. 2.1, iB is too much increased, noise but
also small movement vectors will be removed.

The speed of the eyelid is more significant at its begin-
ning than at its endFig. 15. For each person the speed of
the eyelid is different, and can even vary for the same per-
son according to her tiredness or her nervousness and the
voluntary or involuntary nature of the movement, so we
give just a speed range. These values were obtained with
test sequences in a laboratory. It is probable that the found
eyelid speed range should be modified if the values were
derived from a large number of persons. Finally, these val-
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Fig. 15 Curves depicting the eyelid velocity (video rate: 200
images/s). The movement seems to feature two phases.

11.

ues, in their current unit§ixels/s, depend on the experi-
mental conditions of acquisitiofresolution of the sensor,
lens, object/camera distance, and video )raide experi- 3
ment seems to point out two phas@sg. 15 in eyelid

movement: beginning and middle courses of eyelid move-
ment, where acceleration and then deceleration are regular;

and the end of eyelid movement, which present a different 15

speed evolution. Further experiments will be made to con-
firm these observations.

16.

5 Conclusion
A multiresolution scheme for the cooperation of two differ-
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