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Abstract. For a medical application, we are interested in an estimation
of optical flow on a patient’s face, particularly around the eyes. Among
the methods of optical flow estimation, gradient estimation and block
matching are the main methods. However, the gradient-based approach
can only be applied for small displacements (one or two pixels). Gener-
ally, the process of block matching leads to good results only if the
searching strategy is judiciously selected. Our approach is based on a
Markov random field model, combined with an algorithm of block match-
ing in a multiresolution scheme. The multiresolution approach allows de-
tection of a large range of speeds. The large displacements are detected
on coarse scales and small displacements are detected successively on
finer scales in a coarse to fine strategy. The Markov random fields allow
the initialization and control of motion estimation across all scales. The
tracking of motion is achieved by a block matching algorithm. This
method gives the optical flow, whatever the amplitude of motion is, if
pertaining to the range defined by the multiresolution approach. The re-
sults clearly show the complement of Markov random field estimation
and block matching across the scales. © 2002 Society of Photo-Optical Instru-
mentation Engineers. [DOI: 10.1117/1.1428740]

Subject terms: motion; block matching; Markov random fields; multiresolution;
eyelid movements.
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1 Introduction

This research was carried out within the framework o
medical application, where we are particularly interested
the movement of the eyelid. This area is not entirely str
tured, and the speed of the eyelid is not homogenous.
motion characterization must be sufficiently accurate
take into account these two properties. The movement
servation is done on a sequence of gray level images
addition, the movements present great differences in am
tude, and the low acquisition rate makes the motion esti
tion of large amplitudes difficult. A motion is considered
a motion of large amplitude when it exceeds three or f
pixels per frame. There are a lot of techniques of movem
estimation, but generally they are classified in three m
categories: differential methods1,2 ~methods of Horn,
Schunk, and Nagel!, mapping methods3,4 ~block matching!,
and transform methods5,6 ~Gabor transform, Fourier trans
form!. The first methods give good results, provided th
only movements of small amplitude are considered. T
second techniques operate correctly on structured elem
and motions of different amplitudes, nevertheless the p
cision of this process is not a subpixel one. The last me
ods are exploitable only for elementary movements. In
case, movements have various amplitudes. So a simple
efficient method to compute motion estimation for a lar
range of speed is proposed. The complement of differen
methods and block matching allows us to characterize
the movements in image sequences. The cooperatio
these two methods is achieved by a multiresolution st
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egy. Section 2 summarizes the results of the theory of M
kov random fields model and the principle of block matc
ing applied to motion estimation. Components of t
multiresolution strategy are explained in detail as a p
amble to the algorithm in Sec. 3. In the last section a f
results are presented.

2 Motion Estimate

2.1 Markov Random Fields

In this section, some results of Markov random fiel
~MRFs!7–9 applied to motion estimation are presente
These results are obtained from the Gibbs field model
Hammersley Clifford theorem. The central assumption
that the luminance of a pixel is constant in two success
images, although some works take into account variat
luminance.10 Therefore, MRF modeling is equivalent to a
energy function, and the motion estimation problem is
duced to the minimization of this energy function.
Classically, the energy function is composed of two pa
The first one is the data energy:

@ f ~s1ps
t ,t1dt!2 f ~s,t !#2,

wheref is an image sequence. The latter is the regulari
tion energy, based on the Tikhonov regularization mo
usually used for motion estimation:

V~s,sj ,p,pj !5bips
t 2psj

t i2,
435© 2002 Society of Photo-Optical Instrumentation Engineers



g

-
e to
lu-
er-
re-
n
i-

be

e-
ly
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whereV() is the potential function,s is the current site,sj

is a set of sites in the neighborhood ofs, and ps
t is the

motion vector on the sites at the timet. Its components are
us and vs . b is the parameter of regularization, varyin
from zero to infinity.

Concerning the choice ofb, small values lead to an ac
curate solution for image data, but results are sensitiv
noise. On the other hand, high value implies smooth so
tion, but results do not match the luminance data. Nev
theless, detection of movement of subpixel amplitude
quires a small value forb. The best compromise betwee
detection of the small movements of the eyelid and elim
nation of the noise of the acquisition system has to
found.
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The total energy function is equal to:

E~s,t !5@ f ~s1ps
t ,t1dt!2 f ~s,t !#2

1 (
$s,sj %PC2

bips
t 2psj

t i2,

whereC2 is the second order clique.
The minimum energy function is obtained when the d

rivative fromus andvs is equal to zero, assuming that on
a small displacement is taken into account.

The solution isps5(us ,vs) with
us5
22~2 f x ḟ 1($s,sj %PC2

22busj
!3@~ f y!214b#1~2 f y ḟ 1($s,sj %PC2

22bvsj
!3~2 f xf y!

4@~ f x!
214b#3@~ f y!214b#2~2 f xf y!2

vs5
22~2 f y ḟ 1($s,sj %PC2

22bvsj
!3@~ f x!

214b#1~2 f x ḟ 1($s,sj %PC2
22busj

!3~2 f xf y!

4@~ f x!
214b#3@~ f y!214b#2~2 f xf y!2
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whereus andvs are the components ofps
t

f x5 f ~x1dx,y,t !2 f ~x,y,t !;

f y5 f ~x,y,1dy,t !2 f ~x,y,t !;

ḟ 5 f ~x,y,t11!2 f ~x,y,t !.

The expression ofps(us ,vs) is a function of space lumi-
nance, temporal gradients, and the speed of the neigh
of the considered pixel. The value ofps(us , vs) is obtained
by an iterative process that converges toward the fi
value. The estimation of movement by MRF is finally r
duced tous and vs computing. All small movements ar
estimated with this simple calculation. Unfortunately, th
method leads to incoherent results for great amplitu
movements.

2.2 Block Matching Process

The estimation of motion by block matching4 consists
~choosing a block in an image! in finding the best similar
block with respect to criterion in another reference ima
The displacement vector is deduced from the positions
the two blocks. The criterion of similarity between tw
blocks is generally the quadratic error or difference in a
solute value. In our case, the criterion is defined as follo
ing:

C5(
B

u~ I 12 Ī 1!2~ I 22 Ī 2!u,

whereI 1 andI 2 are the pixel luminances of blocks, respe
tively, in the previous image and in the current image.I 1
s

l

and I 2 are the average pixel luminances of blocks, resp
tively, in the previous image11 and in the current image.B
is the subset of pixels of the block.

The search for the reference block is done within a w
dow whose dimensions are selected according to the
tected displacement between the current image and re
ence image. The strategies of search are numerous; we
quote the binary searching, searching in spiral, or the h
archical searching.

The block matching allows the estimation of great a
plitude movement if initialization and correlation criterio
are correctly chosen. Moreover, the size of the search
must be in relation to motion amplitude.

3 Method

It was shown in a preceding section that estimation of
optical flow by MRFs allows only a detection of sma
movements of amplitude less than 3 pixels, and that bl
matching detects movements of greater amplitudes if
process of search is well initialized. A multiresolution a
proach is used to merge these two methods.12,13Indeed, if a
movement is significant on scale 0~initial image!, it will
become a movement of low amplitude in scales of coar
resolution. The MRF is used to characterize this small d
placement, and motion tracking across the scale is achie
by BMP. BMP initialization is obtained with MRF. This
section is organized as follows. First, the pyramidal fram
work is described, then the propagation of movement e
mation across scales and BMP parameters are exposed
nally our algorithm is presented.

3.1 Components of Pyramidal Approach

3.1.1 Pyramid construction

Pyramid construction is an efficient alternative to obtaini
an adaptable motion estimate algorithm. Many multireso
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tion schemes14–16 have been developed over the last fe
years. These methods are mainly optimized in regard
details needed to obtain the scalej from the scalej 11. We
can quote criteria like entropy and aliasing. In this work,
study has been conducted to choose the best multiresolu
method. However, precaution to limit aliasing has be
taken by smooth filtering. The construction of the ima
pyramid is a fine to coarse process. A pixel at scalej 11 is
simply the mean of its 4-neighborhood at scalej. The scale
image j 11 of the pyramid is obtained by subsampling.
m3m is the number of pixels of the image 0, the size
the imagej is (m/2j )3(m/2j ) ~Fig. 1!. An image at resolu-
tion j will be denotedI j .

3.1.2 Propagation of movement estimation

The movement estimation is carried out in a coarse to
approach,17 as shown in Fig. 2~a!. The difficulty of the
coarse to fine approach is associating information point
scale j 11 to scalej. Indeed, we need to initialize move
ment imagej on the base of movement estimation at sc
j 11. Figure 2~b! shows how motion vectors of scalej are
obtained from the motion vectors of scalej 11. Each mo-
tion vector for the pixels illustrated in black on scalej is
two times the motion vector at scalej 11. All the other
points at scalej are deduced from linear combinations,
shown in Fig. 2. Before presenting the algorithm, let
clarify the parameters of BMP.

Fig. 1 (a) Image pyramid construction. (b) Scale j11 is obtained
from scale j. Scale j is composed of 16 pixels of >. The four black
reference mark pixels d (p even and q even) represent the scale j
11.
n

f

3.1.3 Parameters of block matching

As previously shown, BMP consists in linking a block of a
image to another one in another image. In this work,
chosen block size is 333 pixels. The search direction fo
matching is initialized at scalej by propagating the motion
vector estimated by MRF at scalej 11. The size of the
search area is hierarchical and depends on the motion
tor determined at scalej 11. Indeed, if a displacement ofq
pixels at scalej 11 is detected, displacement on the upp
scale will be of 23q pixels. As defined before, the corre
spondence criterion is the mean difference of luminan
pixel to pixel between the two blocks. The block minimi
ing this difference is selected. Figure 3 represents the w
to track the motion across scales with BMP~in this ex-
ample only three scales are represented!.

The size of the search area is defined by the displa
ment vector estimated on the coarser scale. This are
centered on the pixel whose position is calculated with
formation from the lower scale. The size of the interest a
is four times the value found on the coarse scale.

3.2 Algorithm

Let there be a temporal sequence of (n11) images

$I 0,I 1,...,I k,...%kP@0,n# ,

where k denotes the time. First of all, a multiresolutio
pyramid of ~Pk21,Pk)kP@0,n# is built following the process

Fig. 2 (a) Movement pyramid creation: level 0 corresponds to the
searched result. The algorithm begins at scale J. (b) Movement
propagation: relation between pixels at scale j11 and pixels at
scale j. New pixels at scale j are initialized by the interpolation of the
neighboring values at scale j11 (as illustrated).
Fig. 3 Process of block matching across scales. In this example MRF initializes at scale 2. Propaga-
tion produces a vector magnified two times at scale 1. BMP improves accuracy of this vector at scale
1 and then at scale 0.
437Optical Engineering, Vol. 41 No. 2, February 2002
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Fig. 4 Interest of control: (a) propagation of information without control, the error is propagated and (b)
propagation of information with control, to eliminate error. The gray pixel is where motion is detected
by the Markov process. d pixel is where false motion due to noise is detected by MRF. The gray
square set of pixels is where block matching is applied, the j set of pixels is where block matching is
applied, and the h set of pixels is forced to 0.
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described in Sec. 3.1.1. All calculations will be carried o
on a pair of successive pyramids noted (Pk21,Pk) where:

pk215$I 0
k21,I 1

k21,...,I j
k21% and Pk5$I 0

k,I 1
k,...,I J

k%

with J11 the number of scales. The task of the movem
estimation algorithm is to build gradually the pyramid
movement:

$~Uk
J ,Vk

J!,~Uk
J21 ,Vk

J21!,...,~Uk
0 ,Vk

0!%,

where (Uk
0 ,Vk

0) is the expected movement vector imag
The algorithm is organized as following:

1. For each pyramid image, movement estimation
processed by MRF on the coarsest scale (I J

k21,I J
k)

and produces vector image (Uk
j 5J ,Vk

j 5J).

2. Vectors are propagated on the next finer scale, as
plained in Sec. 3.1.2 to initialize (Uk

j ,Vk
j ) with j

5 j 21.

3. At the finer scale, two configurations are possible
refine (Uk

j ,Vk
j ): the initial vector is null, and in this

case the motion vector is determined by MRF, o
nonnull initial vector is found and used to initializ
the BMP whose parameters are defined in Sec. 3.

4. The algorithm is iterated from step 2 until scale
The final result is the vector image (Uk

0 ,Vk
0).

To improve the process, a modification in step 3 is int
duced. If motion is detected for a given point at scalej
11, the initial vectors at scalej will not be null in the
4-neighborhood. Consequently, all these points are chec
to know if they correspond to real movement. So, bef
estimation by the block matching, the propagation of mo
ment is refined by MRF. If a point does not correspond
movement, its initialization is forced to 0. Figure 4 illu
trates the utility of control before the application of bloc
matching on the same example. Figure 5 shows an exam
of two image pyramids where the complement of MRF a
BMP is clear. The algorithm is summarized in Fig. 6.

4 Some Experimental Results

Results are presented for synthetic and real sequence
particular, the robustness of the method against the nois
neering, Vol. 41 No. 2, February 2002
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shown, then its behavior on movements of various am
tudes is illustrated. A comparison between the results
tained with the cooperative method and the results obtai
with MRF or BMP applied separately is presented. Fina
some quantitative movement estimates are presented.

4.1 Noise Effect

Real images are corrupted by the noise of the acquisi
system. At first, the noise of the acquisition system is e
mated. This system includes optic, CCD, and electron
This noise is classically modelized by a Gaussian distri
tion, and the estimation of the mean variance is achie
from the image sequence of homogeneous luminance
different gray levels. Measure gives a value of 3 for t
variance. Subsequently, the robustness of the algorithm
evaluated on noisy synthetic images. This test permits
adjustment of parameters, mainlyb.

A pair of images extracted from the test sequence
shown in Fig. 7. The sequence of images represents
homogeneous square moving in translation on an homo
neous background~whose luminance is different from th
square luminance!. The movement is a translation of on
pixel to the right according to the horizontal axis. The r
sults are consigned in Fig. 8.

The results in Fig. 8~a! show that the detection of move
ment is correct. For a noisy sequence with Gaussian n
of variance similar to the noise of acquisition system, so
vectors present false directions and wrong norms. Ob
ously, the overall movement estimation is satisfactory@Fig.
8~b!#. As noise variance increases, the result is degrad

Fig. 5 Contributions of (a) the Markovian approach and (b) of block
matching. The white points show the pixels where motion is de-
tected.
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Fig. 6 Algorithm for motion estimate. Notation: the I image of the sequence, (Uj
k ,Vj

k) motion vector at
time k and scale j.
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and it becomes difficult to localize good vectors amo
wrong ones@Fig. 8~c!#. We still recognize the dominating
movement, but it seems unreasonable to calculate the n
of the motion vectors to determine the speed of the obj
Experiments and settings have been conducted and s
that the algorithm will not be sensitive to noise added
the acquisition system.

4.2 Speed Estimate

An homogeneous disk with a colored sector has been
signed to study the behavior of our algorithm for mov
ments of various amplitudes along the image seque
.
w

-

~corresponding to various speeds!. Then this disk in uni-
form rotation~angular velocityp/3 rd/s! has been shot at 25
images/s.

Figure 9~c! shows that norm of vectors decreases n
the center of the disk. In Fig. 10, the contribution of MR
and BMP across the scale is clearly shown. On each s
MRF allows the detection of small displacements, a
BMP tracks the movements that are detected by MRF
the coarser scale.

Movements with large amplitude are detected in t
coarsest scales. As the amplitude of movement decre
~near the center of the disk!, the estimate is initialized at the
finest scales. The efficiency of our algorithm is evalua
Fig. 7 Two successive images of the sequence.
439Optical Engineering, Vol. 41 No. 2, February 2002
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440 Optical En
Fig. 8 Displacement vectors (a) on the initial sequence without noise, (b) on the sequence with noise
(noise variance54), and (c) on the sequence with noise (noise variance59).

Fig. 9 (a) and (b) Pair of images extracted from the sequence, and (c), (d) the displacement vector
field associated.

Fig. 10 Contribution at different scales of (a) the Markovian approach, and (b) block matching. The
white points show pixels over which motion is detected (video rate: 25 images/s).
gineering, Vol. 41 No. 2, February 2002
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Fig. 11 Comparison between theoretical and experimental angular
speed. The curve is composed of two parts corresponding to the
Markov method and the block matching process. The speed in-
creases by 1 pixel/s when the radius increases by 23 pixels. Motion
estimation by Markov random fields is subpixel, consequently the
experimental curve is similar to the theoretical one. The motion es-
timation using the block matching process is constant at intervals of
23 pixels, because the block matching process has a resolution of
one pixel (video rate: 25 images/s).

Fig. 12 Comparison between theoretical and experimental angular
speed. The MRF results are similar to the theoretical ones only for
small displacement. Thus the difference between the two curves is
important.

Fig. 13 Comparison between theoretical and experimental angular
speed. The BMP cannot provide estimation for motion slower than
25 pixels/s. The curve for the BMP is step-like, but the estimate is
close to the theoretical angular speed.
using the comparison between experimental and theore
angular speeds~Fig. 11!.

4.3 Comparison of Results Obtained with Different
Methods

In the last section, the previous example~a disk in uniform
rotation! is used to show the efficiency of the MRF an
BMP cooperation. The cooperative method is compared
the MRF or BMP method applied separately.

Figure 12 presents theoretical and MRF results. T
MRF method gives good results only for small displac
ments. Motion amplitudes greater than two or three pix
per image lead to unstable estimation; the deterministic
gorithm used in this approach can converge toward a glo
minimum only when dealing with small movements.

Figure 13 illustrates theoretical and BMP results. T
step-like shape is due to the one pixel resolution linked
the fact that BMP cannot provide an estimation for moti
slower than 25 pixels/s~video rate is 25 images/s!. But the
estimate stays close to the theoretical angular speed.

Figure 11 presents the MRF and BMP cooperation. T
method takes the advantage of each process. For smal
placements, the MRF process is used for its greater a
racy. For large displacements BMP is used for its capabi
to detect large movement with a correct and stable estim

4.4 Examples of Application on a Deformable Area

Figure 14 presents two pairs of images showing the vol
tary eyelid closure. The algorithm seems reliable for t
determination of the direction and norm of the motion ve
tors. Some estimation errors are due to noise and alias
and they will be eliminated in future experimentation wi
a full frame camera. A solution to cope with the noise pro
lem would be to increase the value ofb, which would
imply the disappearance of false vectors. However,
specified in Sec. 2.1, ifb is too much increased, noise bu
also small movement vectors will be removed.

The speed of the eyelid is more significant at its beg
ning than at its end~Fig. 15!. For each person the speed
the eyelid is different, and can even vary for the same p
son according to her tiredness or her nervousness and
voluntary or involuntary nature of the movement, so w
give just a speed range. These values were obtained
test sequences in a laboratory. It is probable that the fo
eyelid speed range should be modified if the values w
derived from a large number of persons. Finally, these v

Fig. 14 Images and results for voluntary eyelid closure. For visibil-
ity, only one vector out of four is shown. Horizontal aliasing is due to
interlacing.
441Optical Engineering, Vol. 41 No. 2, February 2002
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ues, in their current units~pixels/s!, depend on the experi
mental conditions of acquisition~resolution of the sensor
lens, object/camera distance, and video rate!. The experi-
ment seems to point out two phases~Fig. 15! in eyelid
movement: beginning and middle courses of eyelid mo
ment, where acceleration and then deceleration are reg
and the end of eyelid movement, which present a differ
speed evolution. Further experiments will be made to c
firm these observations.

5 Conclusion

A multiresolution scheme for the cooperation of two diffe
ent approaches in motion estimation has been presen
These two approaches are Markov field and block ma
ing. The resulting method is able to estimate various a
plitudes of motion in the image sequence. The minimum
motion depends on the trade-off between motion and no
while the maximum of motion detected depends on
depth J of the multiresolution pyramid. The smallest d
tected movement is subpixel displacement, and the lar
one is equal to about 2J11. Presented examples clear
show the contribution of each of the two detection metho
The multiresolution method can be applied to the obj
motion estimate as well as to the estimate of motion
deformable surfaces. In this work, application of t
method has been conducted for estimate of the movem
of the eyelid. Automation of the measures of the movem
of the eyelid closing and opening are in progress. Persp
tives concern the study of the value of regularization
rameters and the construction of a multiscale pyramid.
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