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Abstract. Dimensional control by artificial vision is becoming a
standard tool for industrialists interested in such remote and without
contact measurement methods. The expected accuracy of those
systems is dependent on camera resolution. High precision requires
very costly charge coupling device sensors and frame grabbers.
The proposed method tends to increase significantly the precision of
dimensional measurements without increasing the hardware com-
plexity. This algorithm is also quite robust against noisy images as it
can be encountered in real world imaging; a precision of 1/16 pixel
can easily be obtained with signal to noise ratio52 dB. Our ap-
proach aims at improving the edge detection process involved in
dimensional control by artificial vision. A lot of edge detection tech-
niques with pixel resolution are well known and some of them are
designed in order to be robust against image corruption. On the
other hand B-spline interpolation methods have been considerably
improved and popularized by the signal processing techniques pro-
posed by M. Unser et al. An algorithm resulting from the merging of
these two ideas is proposed in this paper. In this algorithm, the
interpolation is prepared by an optimized filtering and by a detection
of local maxima of gradient. © 2001 SPIE and IS&T.
doi: 10.1117/1.1316089

1 Introduction

Subpixel edge detection and localization in noisy image
a commonly needed tool for artificial vision application
particularly for on-line dimensional control of manufa
tured parts. A lot of edge detection techniques with pi
resolution are well known and some of them are desig
in order to be robust against image corruption. An intere
ing method has been initiated by Canny1 and optimized
linear filters using a similar approach are now quite clas
cal in the image processing toolbox.2–4 On the other hand
B-spline interpolation methods have been considerably
proved and popularized by the signal processing techniq
proposed by Unseret al.5,6 An algorithm resulting from the
merging of these two ideas is proposed in this paper. In
algorithm, interpolation is prepared by optimized filterin
and by a detection of local maxima of gradient.
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It should be noted that this method is consistent with
continuous optimization approach of Canny, so that t
edge detection algorithm should give optimal results w
respect to Canny’s criteria,7 and a fair robustness again
noise can be expected. In Sec. 2 of this paper, the me
used for estimating a gradient with subpixel resolution
described. Section 3 is dedicated to a presentation of
edge detection and localization algorithm. Finally some
perimental results are presented in Sec. 4.

2 Subpixel Gradient

2.1 Optimized Filtering

The approach proposed here is based upon an estimatio
the spatial gradient. It is well known that derivation
noisy discrete signal is an ill-posed problem and that so
regularization is needed. In the way initiated by Canny,1 the
idea is to base it on the optimization of some criteria;
instance, signal over noise ratio~SNR!, edge localization,
and nonmultiplicity of the responses. The result of the o
timization process is a separable linear filter described
two impulse responses in the continuous domain,
implementation of which can be done in a recursive w
after sampling. In the same manner some ot
authors2,3,8,9,4have proposed first, second, or third order I
filters, for performing an estimate of spatial gradient. T
differences and results between these approaches are
sistent with the chosen criteria. The method described h
does not depend on this choice, and in this paper the s
plest one is used; a first order operator proposed by S
and Castan4 is defined by

g~x!5ce2auxu, ~1!

f ~x!5sign~x!de2auxu, ~2!

g(x) being the impulse response of the regularization fil
and f (x) being the impulse response of the derivative filt
After sampling and normalization, transfer functions a
given as

;
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Subpixel edge detection
F~z!5~e2a21!•~z212z!•
1

12e2az21
•

1

12e2az
, ~3!

G~z!5~12e2a!2
•

1

12e2az21
•

1

12e2az
. ~4!

f @k# and g@k# will further denote the correspondin
sampled impulse responses. The unique parameter isa, it
can be seen as the ‘‘width’’ of the filters and taking a lar
value for it leads to smoothing operators which favor SN
against localization. Therefore the setting ofa, as it is
shown further, depends on initial SNR of the image to
processed.

The optimization process leading to the above propo
operator is done for continuous signal and the optima
does not stand after discretization. This point has b
shown by Demigny and Kamle´.7 The interpolation proces
proposed in the next section allows the method to stay
continuous domain, therefore it can be assumed that
optimality stands.

2.2 Subpixel Gradient Estimation

The subpixel gradient estimation is first introduced in t
one-dimensional~1D! case. If e@k# is the initial discrete
signal, following Unser5 its continuous interpolated versio
is given by

e~x!5 (
k52`

1`

u@k#bn~x2k!, ~5!

wherebn(x) is a B-spline function of ordern ~see Appen-
dix A!, and where the interpolation is such that:e@k#
5e(x)ux5k . The impulse responsef (x) is decomposed on
a p-order B-spline basis as

f ~x!5 (
k52`

1`

h@k#bp~x2k!.

For a continuous gradient estimation one has:s(x)
5e* f (x), so that, after summation, permutation and us
the convolution property of B-spline functions

s~x!5(
j

h@ j #(
i

u@ i #bn1p11~x2 j 2 i !. ~6!

If discrete B splines are introduced:5 bn@k#5bn(x)ux5k ,
we can write

e@ i #5 (
k52`

1`

u@k#bn~ i 2k!5u* bn@ i # ~7!

and

u@ i #5e* b21
n @ i #, ~8!

b21
n @ i # being defined by its z transform: B21

n (z)
5 1/Bn(z) if Bn(z) is thez transform ofbn@k# ~an example
d

n

e

of the cubic B-spline interpolation of a discrete step is p
sented in Fig. 1!. The same expression can be obtained
h@k# and finally, we can write

s~x!5(
k

@~e* f * b21
n

* b21
p !@k#bn1p11~x2k!#. ~9!

This operation can be decomposed in two steps, the
one consists in discrete convolution products

v@k#5~e* f * b21
n

* b21
p !@k# ~10!

or in thez-transform domain

V~z!

E~z!
5

F~z!

Bn~z!Bp~z!
. ~11!

It has been demonstrated5 that B21
n (z) is always the trans-

fer function of a stable linear filter~no pole on the unit
circle!. The second step of the operation described in
~9!, for a givenx, is a summation on a finite number o
integer values weighted by masks defined by B-spline fu
tions of the ordern1p11

s~x!5(
k

v@k#bn1p11~x2k!. ~12!

The interpolation must be done around the closest pi
if the coordinate of this pixel is taken as axis origin, thex
range is@21/2,11/2#. An n-order B-spline function has
nonzero values only in the interval6(n11)/2; thereforek
must vary in the domain6(n1p12)/2. This is illustrated
in Table 1 where coefficient values are presented for
interpolation step of 1/16 pixel andn1p1157. The coef-
ficients smaller than 1024 are neglected.

The extension to a 2D signal~image! is easily performed
in a separable manner

¹xe~x,y!5 (
l 52`

1`

(
c52`

1`

v@ l ,c#bn1p11~x2c!

3bn1p11~y2 l !, ~13!

where v@ l ,c# is obtained by separable filtering of inpu
signal following

Fig. 1 Cubic B-spline interpolation of a discrete step.
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Truchetet, Nicolier, and Laligant
V~z1 ,z2!

E~z1 ,z2!
5

F~z2!G~z1!

Bn~z1!Bp~z1!Bn~z2!Bp~z2!
. ~14!

Interpolation masksbn1p11(x2c) and bn1p11(y2 l ) are
also applied separably on rows then on columns.

All practical elements necessary to determine B spli
and associated filters can be found in the papers of U
et al.5,6

3 Edge Detection and Localization Algorithm

Our algorithm is a two stages process. A first approxim
tion ~at pixel resolution! of edge position is determined i
the first step by detection of the local maximum of t
spatial gradient estimated with an optimized opera
~Shen-Castan4 for instance!. In the second step, a more pr
cise determination of the maximum of the gradient is o
tained by a local computation of the spline interpolation
order n1p11 on the gradient image prefiltered b
1/BnBp. This latter computation is limited to a width o
half a pixel in the direction given by the local variation
the gradient. As shown in the previous section, the elem
tary operation in this step is an average weighted by a m
determined bybn1p11(x), wherex is the relative coordi-
nate of the interpolation point in fraction of unity~see
Table 1!. For a rigorous 2D edge localization it is necessa
to detect the gradient maximum along the direction of
gradient vector. Although it is possible to achieve such
algorithm, a less costly approach is proposed here. The
sition of the maximum of the greatest gradient vector co
ponent is taken as the edge position.

Proposition for an Algorithm

Detection

• Shen-Castan filter→ Gradient estimation on the origi
nal pixel sampling grid

• Gradient local maxima detection→ pixel-accuracy
edge localization.

Subpixel localization

• Interpolation prefiltering 1/BnBp

• Subpixel localization of max~max~row-gradient,
column-gradient!!.

Table 1 Interpolation masks (n1p1157).

step:x k523 k522 k521 k50 k51 k52 k53

0 0.0002 0.0238 0.2363 0.4794 0.2363 0.0238 0.0002

0.0625 0.0003 0.0291 0.2578 0.4781 0.2153 0.0193 0.0001

0.1250 0.0005 0.0352 0.2795 0.4742 0.1950 0.0155 0.0001

0.1875 0.0007 0.0423 0.3014 0.4678 0.1755 0.0124 0.0000

0.2500 0.0009 0.0504 0.3230 0.4590 0.1569 0.0098 0.0000

0.3125 0.0013 0.0595 0.3442 0.4478 0.1395 0.0076 0.0000

0.3750 0.0018 0.0698 0.3647 0.4346 0.1231 0.0059 0.0000

0.4375 0.0025 0.0813 0.3843 0.4195 0.1080 0.0045 0.0000

0.5000 0.0034 0.0940 0.4026 0.4026 0.0940 0.0034 0.0000
236 / Journal of Electronic Imaging / January 2001 / Vol. 10(1)
r

-
k

-

The proposed subpixel edge detection algorithm is l
costly in terms of computation time compared to other st
dard methods~Haralick,10 for instance! and it shows a grea
robustness against noise corruption. This last point and
estimation of the edge localization precision are illustra
in the next section. The global complexity of the algorith
~except for the stage of subpixel localization! is O(n), n
being the number of pixels of the image. The computat
cost of the subpixel localization is approximately co
versely proportional to the chosen interpolation step.

4 Experiments

The algorithm efficiency is tested on an image of a r
object~a microdisk: image Figs. 2 and 3! having a straight
side ~right border of the microdisk! for which, physically,
the best model is a straight line. The quality of the subpi
interpolation is estimated by a comparison between
edge point coordinates given by the algorithm and the b
fitted ~least mean square minimization! straight line equa-
tion. It should be noted that standard deviation of er
takes into account edge delocalization as well as false e
points. Robustness against noise is estimated on the s
image which is variously corrupted by an additive Gauss
white noise. The Shen-Castan operator~an example of a
gradient image is presented in Fig. 4! has been chosen in
this experiment. We have noticed during other tests t
quite similar results are obtained with other optimum ed
detectors~Canny-Deriche,2 B–P–T!.11 The regularization
parametera has to be set according to the amount of no
added to the image.

Some experiments with various interpolation steps~see
the curve in Fig. 5! have shown that for the chosen e

Fig. 2 Original microdisk image.

Fig. 3 Corrupted microdisk image: SNR53 dB.



y i
the
the
e

es

t t

e
5

in

t.

be
be
. A
ro-
as
di
nd

ori-
int.
an-
e
56
o-

rd-
is

b-
a

i-
s a
ri-
int
s-
ed
w

e
ur-
f a

Subpixel edge detection
ample, a good tradeoff between complexity and accurac
reached for a resolution of 1/16 pixel. For consistency,
orders of interpolation are the same for the filter and for
signal: n5p53. In this case, the transfer function of th
prefilter is given by

B3~z!5
z141z21

6
. ~15!

Results are summarized on the curves of Fig. 6; th
curves present the standard deviations between the de-
tected edge points and the best straight line with respec
a and SNR. On the original image~SNR5`), s is equal to
0.290 pixel for a one pixel resolution edge detection~with-
out interpolation! where it is equal to 0.026 pixel for th
subpixel algorithm~with an interpolation step of 0.062
pixel!. For noised images and for optimum setting~for a),
the standard deviation remains smaller than the chosen
terpolation step, even for highly corrupted images~SNR50
dB!. The efficiency of the algorithm is thus pointed ou
The sensibility versusa is very low when SNR is high and
the robustness is shown in Fig. 6. However, it should
noted that the tuning of the regularization parameter
comes more and more critical as the noise increases
previously denoted, this parameter, which is inversely p
portional to impulse response ‘‘width,’’ has to decrease
the noise increases. Figure 7 shows an example of the
tribution of edge points detected at one pixel resolution a

Fig. 4 Gradient image from Shen–Castan estimate.

Fig. 5 Standard deviation vs interpolation step.
s
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at subpixel~1/16 pixel! resolution. The approximation in
the 2D approach leads to a slight discrepancy for 45°
ented edges; the curve of Fig. 8 illustrates this last po
Let us note finally that the experiment was led under st
dardMATLAB on a 350 MHz Intel Pentium II processor, th
run of the prefiltering stage was taken as 0.61 s for a 2
3256 image, whereas subpixel localization for the interp
lation step of 1/16 pixel lasts 2.7 ms by edge point. Acco
ing to the remark of the previous section, this time
divided by two for a step of 1/8 pixel.

5 Conclusion

An algorithm for edge detection and localization with su
pixel resolution has been proposed. It is based on
B-spline interpolation of the initial signal and of an opt
mized derivative filter. The proposed method present
guarantee of optimality according to Canny’s or Shen’s c
teria and it leads to high immunity against noise, this po
being particularly important for real world image proces
ing and industrial applications. The operations involv
consist mainly in phase linear recursive filtering of lo
order ~1 or 2! and parameters, in very limited number~2!,
are not critical when noise is low. The efficiency of th
algorithm is illustrated on an image of a real object feat
ing a straight physical edge so that a good detection o

Fig. 6 Standard deviation vs a for various SNR; from the bottom to
the top: `, 15, 8, 5, 2, 0 dB.

Fig. 7 Graph of the right border of the microdisk (pixel, subpixel and
best straight line) for SNR5`.
Journal of Electronic Imaging / January 2001 / Vol. 10(1) / 237
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Truchetet, Nicolier, and Laligant
straight line is a pertinent clue of quality. The Shen–Cas
operator used in this example is effective for steep e
detection. In the case of a more blurred edge, Can
Deriche or theB–P–Toperator should give better result
A more rigorous approach of the 2D extension is un
consideration.

An estimate of comparative performance of this alg
rithm and other subpixel edge detection methods is stil
be done, but some criteria, which are pertinent for this s
of operator, must be first defined. An extensive study
subpixel measurements on well characterized real obj
shot with a well calibrated imaging system is in progre
and the preliminary results seem in good agreement w
the performance presented in this paper.

Finally, it is interesting to remark that the application
this method with the goal of improving performance
edge detector designed in the continuous domain for p
resolution would not lead to great results. The reason is
when the order of B-spline interpolation tends to infinit
the transfer function of the complementary filter tends
unity. This last point is demonstrated in Appendix B.

Appendix A: B-Spline Interpolation Filters

Following Unser,5 the expression of B-spline functio
bn(x) is

bn~x!5 (
j 50

n11
~21! j

n!
S n11

j D S x1
n11

2
2 j D n

•uS x1
n11

2
2 j D , ~A1!

whereu(x) is the Heaviside function and

S n
pD5Cp

n5
n!

p! ~n2p!!
.

These functions can also be defined by a convolution pr
uct:

whereb0(x) is the box function.

Fig. 8 Standard deviation vs edge orientation for SNR515 dB.
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The transfer function of the digital filter used for th
interpolation is

Bn~z!5 (
k52`

1`

bn@k#z2k, with bn@k#5bn~k!,kPZ.

Transfer functions ofBn filters up to order 5 are given in
Table 2.

Appendix B: Limit of B-Spline Interpolation

The interest of B-spline interpolation is mainly due to t
ideal band limited signal limit attained when B-spline ord
tends toward infinity. This property is linked to the Gaus
ian limit of these functions. Indeed, Unseret al. have
shown12 that limit of bn(x) if n tends toward infinity is a
Gaussian

bn~x! ——→
n→`

1

A2psn
2

exp2
x2

2sn
2

with

sn
25

n11

12
. ~B1!

If this limit is taken to estimate limit ofbn* bp(k), it fol-
lows:

bn* bp~k!.
1

2psnsp
(

i
exp2F i 2

2sn
2

1
~k2 i !2

2sp
2 G

and with

l 5 i 2k
sn

2

sn
21sp

2

and

Table 2 Transfer function of B-spline interpolation filters.

n Bn(z)

0 1

1 1

2
z161z21

8

3
z141z21

6

4
z2176z1230176z211z22

384

5
z2126z166126z211z22

120
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Subpixel edge detection
s25
sn

2sp
2

sn
21sp

2

bn* bp~k!.
1

2psnsp

exp2
k2

2~sn
21sp

2!
(

l
exp2

l 2

2s2
.

~B2!

If n,p→` therefore,s2→ np/12 and (1/s) ( lexp2 (l2/
2s2) can be considered as a Riemann summation of
1/s, and whens tends to zero this summation converg

to: *2`
1`e2 (x2/2)dx5A2p; reporting in Eq.~B2!, it is

bn* bp~k!.
1

A2p~sn
21sp

2!
exp2

k2

2~sn
21sp

2!
.

In another point and with the same approximation,
limit of bn1p11(x) with x5k1a, a being the decimal
part of x, is given by:

bn1p11~x!.
1

A2p~sn
21sp

2!
exp2

k2

2~sn
21sp

2!

3exp2
2ka

2~sn
21sp

2!
exp2

a2

2~sn
21sp

2!

therefore whenn,p→`

bn1p11~k1a!.bn* bp~k!exp2
ka

sn
21sp

2
. ~B3!

If the decimal part is null ~pixel resolution!, a50:
bn1p11(k).bn* bp(k), and the effect of B-spline interpo
lation is null.
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