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Abstract. Dimensional control by artificial vision is becoming a
standard tool for industrialists interested in such remote and without
contact measurement methods. The expected accuracy of those
systems is dependent on camera resolution. High precision requires
very costly charge coupling device sensors and frame grabbers.
The proposed method tends to increase significantly the precision of
dimensional measurements without increasing the hardware com-
plexity. This algorithm is also quite robust against noisy images as it
can be encountered in real world imaging; a precision of 1/16 pixel
can easily be obtained with signal to noise ratio=2 dB. Our ap-
proach aims at improving the edge detection process involved in
dimensional control by artificial vision. A lot of edge detection tech-
niques with pixel resolution are well known and some of them are
designed in order to be robust against image corruption. On the
other hand B-spline interpolation methods have been considerably
improved and popularized by the signal processing techniques pro-
posed by M. Unser et al. An algorithm resulting from the merging of
these two ideas is proposed in this paper. In this algorithm, the
interpolation is prepared by an optimized filtering and by a detection
of local maxima of gradient. © 2001 SPIE and IS&T.

doi: 10.1117/1.1316089

1 Introduction

It should be noted that this method is consistent with the
continuous optimization approach of Canny, so that this
edge detection algorithm should give optimal results with
respect to Canny’s criteriaand a fair robustness against
noise can be expected. In Sec. 2 of this paper, the method
used for estimating a gradient with subpixel resolution is
described. Section 3 is dedicated to a presentation of the
edge detection and localization algorithm. Finally some ex-
perimental results are presented in Sec. 4.

2 Subpixel Gradient

2.1 Optimized Filtering

The approach proposed here is based upon an estimation of
the spatial gradient. It is well known that derivation of
noisy discrete signal is an ill-posed problem and that some
regularization is needed. In the way initiated by Cahtiye

idea is to base it on the optimization of some criteria; for
instance, signal over noise rat{8NR), edge localization,

and nonmultiplicity of the responses. The result of the op-
timization process is a separable linear filter described by
two impulse responses in the continuous domain, the

Subpixel edge detection and localization in noisy images is. . i . .
a commonly needed tool for artificial vision applications; IMmPlementation of which can be done in a recursive way,
particularly for on-line dimensional control of manufac- after sam Jlng. In the same manner some other
tured parts. A lot of edge detection techniques with pixel authoré>**“have proposed first, second, or third order IIR
resolution are well known and some of them are designedf'l,ters' for performing an estimate of spatial gradient. The
in order to be robust against image corruption. An interest- differences and results between these approaches are con-
ing method has been initiated by Cafrgnd optimized sistent with the chosen criteria. The method described here
linear filters using a similar approach are now quite classi- 40€S not depend on this choice, and in this paper the sim-
cal in the image processing toolb8% On the other hand, PI€St one is used; a first order operator proposed by Shen
B-spline interpolation methods have been considerably im-2"d Castahis defined by

proved and popularized by the signal processing techniques

proposed by Unsegt al>® An algorithm resulting from the ~ g(x)=ce™ (2)
merging of these two ideas is proposed in this paper. In this

algorithm, interpolation is prepqred by opti_mized filtering f(x)zsigdx)dewlxt 2)

and by a detection of local maxima of gradient.

g(x) being the impulse response of the regularization filter
andf(x) being the impulse response of the derivative filter.
After sampling and normalization, transfer functions are
given as
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f[k] and g[k] will further denote the corresponding
sampled impulse responses. The unique parametey is

can be seen as the “width” of the filters and taking a large -4 2, 4
value for it leads to smoothing operators which favor SNR

against localization. Therefore the setting @f as it is Fig. 1 Cubic B-spline interpolation of a discrete step.
shown further, depends on initial SNR of the image to be

processed.

The optimization process leading to the above proposedq¢ jhe ¢pic B-spline interpolation of a discrete step is pre-

operator is done for continuqus .signal qnd the optimality sented in Fig. L The same expression can be obtained for
does not stand after discretization. This point has beenh[k] and finally, we can write

shown by Demigny and KamleThe interpolation process
proposed in the next section allows the method to stay in
continuous domain, therefore it can be assumed that thes(x)zz [(exfxb" xbP )[K]B"PH(x—k)]. (9)
optimality stands. K

This operation can be decomposed in two steps, the first

2.2 Subpixel Gradient Estimation one consists in discrete convolution products
The subpixel gradient estimation is first introduced in the | o
one-dimensional1D) case. Ife[k] is the initial discrete ~ v[K]=(exfxbZ;*b%,)[k] (10
signal, following Unsetits continuous interpolated version ) )
is given by or in the z-transform domain
= V(z) F(2) (11)
= n —_— = .
e(x)= 2 ulk]B"(x—k), G E@ 2872
whereB"(x) is a B-spline function of orden (see Appen- It has been demonstrafethatB” ,(z) is always the trans-
dix A), and where the interpolation is such thafk] fer function of a stable linear filteno pole on the unit
=e(x)|y_x. The impulse responskx) is decomposed on circle). The second step of the operation described in Eq.
a p-order B-spline basis as (9), for a givenx, is a summation on a finite number of
integer values weighted by masks defined by B-spline func-
+oo tions of the orden+p+1

f00= 2 hIKIBP(x—K).
s(0)= 2 K] P Hx—K). (12)

For a continuous gradient estimation one ha$x)
=ex*f(x), so that, after summation, permutation and using

. : X The interpolation must be done around the closest pixel,
the convolution property of B-spline functions

if the coordinate of this pixel is taken as axis origin, the
range is[ —1/2,+1/2]. An n-order B-spline function has
s() =2 h[j12 u[i]p"" P (x—j—i). (6)  nonzero values only in the interval (n+1)/2; thereforek

j i must vary in the domairt (n+ p+2)/2. This is illustrated
in Table 1 where coefficient values are presented for an
interpolation step of 1/16 pixel anth-p+1=7. The coef-
ficients smaller than 10" are neglected.

If discrete B splines are introduc&db"[k]=8"(X)|x—k.
we can write

Foo ~ The extension to a 2D signdmags is easily performed
elil]= 2 urk]8"(i —k)=uxb"i] 7 in a separable manner
k==e + oo + o
and V)= 2 2 oll,e]g" P x—c)
=—0 C=—00
ufil=exb" [i], (8) X BMHPHL(y—1), (13
b",[i] being defined by itsz transform: B",(2) where v[l,c] is obtained by separable filtering of input

= 1/B"(2) if B"(z) is theztransform ofb"[k] (an example  signal following
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Table 1 Interpolation masks (n+p+1=7).

step:x k=-3 k=—-2 k=-1 k=0 k=1 k=2 k=3

0 0.0002 0.0238 0.2363 0.4794 0.2363 0.0238 0.0002
0.0625 0.0003 0.0291 0.2578 0.4781 0.2153 0.0193 0.0001
0.1250 0.0005 0.0352 0.2795 0.4742 0.1950 0.0155 0.0001
0.1875 0.0007 0.0423 0.3014 0.4678 0.1755 0.0124 0.0000
0.2500 0.0009 0.0504 0.3230 0.4590 0.1569 0.0098 0.0000
0.3125 0.0013 0.0595 0.3442 0.4478 0.1395 0.0076 0.0000
0.3750 0.0018 0.0698 0.3647 0.4346 0.1231 0.0059 0.0000
0.4375 0.0025 0.0813 0.3843 0.4195 0.1080 0.0045 0.0000
0.5000 0.0034 0.0940 0.4026 0.4026 0.0940 0.0034 0.0000 Fig. 2 Original microdisk image.

The proposed subpixel edge detection algorithm is less
costly in terms of computation time compared to other stan-
V(z1.2) _ F(2)G(z) _ (14) dard methodgHaralick° for instancg and it shows a great
E(z;,z,) B"(z;)BP(z1)B"(z,)BP(z,) robustness against noise corruption. This last point and an

estimation of the edge localization precision are illustrated
Interpolation maskg"*P*(x—c) and B"*P*i(y—1) are in the next section. The global complexity of the algorithm
also applied separably on rows then on columns. (except for the stage of subpixel localizatias O(n), n

All practical elements necessary to determine B splinesbeing the number of pixels of the image. The computation
and associated filters can be found in the papers of Unsecost of the subpixel localization is approximately con-
et al>® versely proportional to the chosen interpolation step.

3 Edge Detection and Localization Algorithm 4 Experiments

Our algorithm is a two stages process. A first approxima- The algorithm efficiency is tested on an image of a real
tion (at pixel resolutioh of edge position is determined in  object(a microdisk: image Figs. 2 and Baving a straight

the first step by detection of the local maximum of the side (right border of the microdiskfor which, physically,
spatial gradient estimated with an optimized operator the best model is a straight line. The quality of the subpixel
(Shen-Castdhfor instance. In the second step, a more pre- interpolation is estimated by a comparison between the
cise determination of the maximum of the gradient is ob- edge point coordinates given by the algorithm and the best
tained by a local computation of the spline interpolation of fitted (least mean square minimizatjostraight line equa-
order n+p+1 on the gradient image prefiltered by tion. It should be noted that standard deviation of error
1/B"BP. This latter computation is limited to a width of takes into account edge delocalization as well as false edge
half a pixel in the direction given by the local variation of Points. Robustness against noise is estimated on the same
the gradient. As shown in the previous section, the elemenimage which is variously corrupted by an additive Gaussian
tary operation in this step is an average weighted by a maskvhite noise. The Shen-Castan operatan example of a
determined byg"*P*1(x), wherex is the relative coordi- ~ dradient image is presented in Fig. Has been chosen in
nate of the interpolation point in fraction of unitisee '[hl$ experiment. We have n.otlced.durlng othe.r tests that
Table 1. For a rigorous 2D edge localization it is necessary duite similar results are obtained V‘l"lth other optimum edge
to detect the gradient maximum along the direction of the detectors(Canny-Deriché, B—P—T1."" The regularization
gradient vector. Although it is possible to achieve such anParameter has to be set according to the amount of noise
algorithm, a less costly approach is proposed here. The poadded to the image.

sition of the maximum of the greatest gradient vector com- ~ Some experiments with various interpolation stegese
ponent is taken as the edge position' the curve in F|g 5 have shown that for the chosen ex-

Proposition for an Algorithm
Detection

« Shen-Castan filter» Gradient estimation on the origi-
nal pixel sampling grid

» Gradient local maxima detectior» pixel-accuracy
edge localization.

Subpixel localization

« Interpolation prefiltering B"BP

e Subpixel localization of maxnaxrow-gradient,
column-gradieny. Fig. 3 Corrupted microdisk image: SNR=3 dB.
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Fig. 6 Standard deviation vs « for various SNR; from the bottom to
the top: =, 15, 8, 5, 2, 0 dB.

Fig. 4 Gradient image from Shen—Castan estimate.

ample, a good tradeoff between complexity and accuracy is ) ) . L
reached for a resolution of 1/16 pixel. For consistency, the &t Subpixel(1/16 pixe) resolution. The approximation in

orders of interpolation are the same for the filter and for the the 2D approach leads to a slight discrepancy for 45° ori-
signal: n=p=3. In this case, the transfer function of the ented edges; the curve of Fig. 8 illustrates this last point.
prefilter is given by Let us note finally that the experiment was led under stan-

dardMATLAB on a 350 MHz Intel Pentium Il processor, the
run of the prefiltering stage was taken as 0.61 s for a 256
X256 image, whereas subpixel localization for the interpo-
lation step of 1/16 pixel lasts 2.7 ms by edge point. Accord-
ing to the remark of the previous section, this time is
Results are summarized on the curves of Fig. 6; thesedivided by two for a step of 1/8 pixel.

curves present the standard deviatienbetween the de-

tected edge points and the best straight line with respect tdd  Conclusion

a and SNR. On the original imag&NR=x), o isequalto  An algorithm for edge detection and localization with sub-
0.290 pixel for a one pixel resolution edge detectimith- pixel resolution has been proposed. It is based on a
out interpolation where it is equal to 0.026 pixel for the B-spline interpolation of the initial signal and of an opti-
subpixel algorithm(with an interpolation step of 0.0625 mized derivative filter. The proposed method presents a
pixel). For noised images and for optimum settifigr ), ~ guarantee of optimality according to Canny’s or Shen’s cri-
the standard deviation remains smaller than the chosen int€ria and it leads to high immunity against noise, this point
terpolation step, even for highly corrupted imag8slR=0 bemg parpcularly important for real world image process-
dB). The efficiency of the algorithm is thus pointed out. iNg and industrial applications. The operations involved
The sensibility versug is very low when SNR is high and consist mainly in phase Ilnear recursive filtering of low
the robustness is shown in Fig. 6. However, it should be©rder(1 or 2 and parameters, in very limited numb@,
noted that the tuning of the regularization parameter be-are not critical when noise is low. The efficiency of the

comes more and more critical as the noise increases. A@&90rithm is illustrated on an image of a real object featur-
previously denoted, this parameter, which is inversely pro- N9 @ straight physical edge so that a good detection of a

portional to impulse response “width,” has to decrease as
the noise increases. Figure 7 shows an example of the dis-

z+44+71

Bs(2)= (15

tribution of edge points detected at one pixel resolution and 2085
e
0.3] 28 / <
0.25 075f ~
0.21 f/f
3 /J-—'
. 207 F "
sigma ’
0.15 { rff{-
01 2065} Vs
e 4
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206 1 1 1 1 1 1 1 L
0 02 03 i 0 10 20 30 40 50 60 70 80 90
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Fig. 7 Graph of the right border of the microdisk (pixel, subpixel and

Fig. 5 Standard deviation vs interpolation step. best straight line) for SNR=.
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0.06 Table 2 Transfer function of B-spline interpolation filters.
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2 edgSrientation % 8 4 7+762+230+76z 1+ 272
Fig. 8 Standard deviation vs edge orientation for SNR=15 dB. 384
72+ 262+66+26z 1+z72
5

straight line is a pertinent clue of quality. The Shen—Castan 120

operator used in this example is effective for steep edge
detection. In the case of a more blurred edge, Canny—
Deriche or theB—P—T operator should give better results.

A more rigorous approach of the 2D extension is under
consideration. The transfer function of the digital filter used for the

An estimate of comparative performance of this algo- interpolation is
rithm and other subpixel edge detection methods is still to
be done, but some criteria, which are pertinent for this sort
of operator, must be first defined. An extensive study of B"(z)= > b"klz™*, with b"k]=p"(k),keZ.
subpixel measurements on well characterized real objects k==
shot with a well calibrated imaging system is in progress
and the preliminary results seem in good agreement with
the performance presented in this paper.

Finally, it is interesting to remark that the application of
this method with the goal of improving performance of o . .
edge detector designed in the continuous domain for pixelAppendlx B: Limit of B-Spline Interpolation
resolution would not lead to great results. The reason is thatThe interest of B-spline interpolation is mainly due to the
when the order of B-spline interpolation tends to infinity, ideal band limited signal limit attained when B-spline order
the transfer function of the complementary filter tends to tends toward infinity. This property is linked to the Gauss-

+ oo

Transfer functions oB" filters up to order 5 are given in
Table 2.

unity. This last point is demonstrated in Appendix B. ian limit of these functions. Indeed, Unset al. have
showrt? that limit of 8"(x) if n tends toward infinity is a
Appendix A: B-Spline Interpolation Filters Gaussian
Following Unser, the expression of B-spline function
B"(x) is B(X) —— ! exp— <
: e N\2mwo? 202
] _n+1(_1)](n+1) n+1 .)n n n n
FO0=2 == 2 with
n+1 n+1
whereu(x) is the Heaviside function and If this limit is taken to estimate limit ob™bP(k), it fol-
lows:
(n n!
_Cn: .
p P p!(n—p)! 1 iZ (k—i)?
b bP(k)= ——— > exp—| —+ ——;
These functions can also be defined by a convolution prod- 2monop | 207, 207,
uct:
and with
B (x)= BB ... *B°(x)
~ v - . O-FI
n times I=i—k > >
oytoy
where 8°(x) is the box function. and
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2 2
5 O'n(Tp

gi=—21P
oﬁ-ﬁ- O'S
|2
202
(B2)

k2
> ex

1
b+ bP(K)~ ———exp— ————
) p_2(a§+a§) T

2maL0p

p—

If n,p—o therefore,o?— np/12 and (16) =exp— (1% 9.

20?) can be considered as a Riemann summation of step
1/o, and wheno tends to zero this summation converges 10.
to: [*7e~ 0®2dx=\27r; reporting in Eq.(B2), it is
11.
k2
exp— .
\/27T(O'ﬁ+ 0'%) 2(0'%+ 0',23)

b bP(K) =

12.

In another point and with the same approximation, the
limit of B"*P*1(x) with x=k+a, a being the decimal
part of x, is given by:

1 k2
exp—
\/277(0'%-1— 0',2)) 2(0'§+ a'g)

Bn+p+1(x):

2ka a?

exp—
2(0'ﬁ+0'§) 2(0'ﬁ+0'5)

X exp—

therefore whem,p— o

n+p+1 ~ hn p ka
B (k+ a)=b™bP(k)exp— ———.
(rn+0'p

(B3)

If the decimal part is null(pixel resolution, a=0:
b"*P+1(k)=b"xbP(k), and the effect of B-spline interpo-
lation is null.
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