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Abstract

The spectral reflectance of an object surface provides valuable information

of its characteristics. Reflectance reconstruction from multispectral image data

is typically based on certain assumptions. One of these common assumptions is

that the same illumination is used for system calibration and image acquisition.

We propose the concept of multispectral constancy which transforms the cap-

tured sensor data into an illuminant-independent representation, analogously

to the concept of computational color constancy. We propose to transform the

multispectral image data to a canonical representation through spectral adap-

tation transform. The performance of such a transform is tested on measured

reflectance spectra and hyperspectral reflectance images. We also investigate

the robustness of the transform to the inaccuracy of illuminant estimation in

natural scenes. Results of reflectance reconstruction show that the proposed

spectral adaptation transform is efficient and is robust to error in illuminant

estimation.
Keywords: Multispectral imaging, reflectance reconstruction, multispectral

constancy, illuminant estimation, spectral adaptation transform.
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1. Introduction

The formation of an image depends on the spectral reflectance of the surface

being viewed, the spectral power distribution and intensity of the illumination,

and the spectral sensitivities of the sensors. In the human visual system, the

three cone types act as sensors. In case of a camera with 3 channels, the RGB

filters together with the imaging sensor, play a similar role. The human vi-

sual system has the natural ability to perceive constant color of surfaces despite

the change in spectral composition of the illuminant, and this ability to dis-

card illumination effects is called Color Constancy [1]. Creation of such models

for illuminant invariant representation of scenes in computer vision is called

computational color constancy [2]. An illuminant invariant representation is

important for computer vision applications including object recognition, track-

ing and image classification [3]. There are two major techniques for achieving

computational color constancy. One method is to compute illuminant invariant

features, and a second method is to estimate the illuminant and later apply a

correction [4]. In this paper, we use the former method of illuminant estimation.

The advancement in sensor technology has developed the use of multispectral

imaging for indoor and close range imaging. The ability of multispectral imaging

in acquisition of more spectral information is useful for object and material

classification and identification by means of spectral reconstruction [5, 6, 7, 8, 9]

of surfaces in a scene. The need for spectral reconstruction of surfaces was

recognized in 1980s [10, 11, 12, 13, 14]. Since then, many methods are developed

to provide spectral reconstruction from the camera data. Most of these methods

rely on the use of training data to learn the mapping between the camera data

and the desired spectra. This process is called calibration of the system and

is performed through a training set of measured reflectances and radiance data

with a given illuminant. To maintain a reasonable accuracy, the same illuminant
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is required for scene acquisition. This limitation of having the same illuminant

for calibration and image acquisition is a major shortcoming for generic use of

multispectral imaging [15].

To overcome this limitation, we propose to transform the acquired multi-

spectral data under any unknown illumination into its canonical representation.

This transformation requires the estimation of scene illuminant. For multi-

spectral images, estimation of illuminant in the sensor domain by using image

statistics based methods is proposed by Thomas [16] and Khan et al. [17]. In

their work, the illuminant estimation methods for color images are extended

from three channels to K channels. The estimated illuminant is used for the

diagonal correction [18] to transform the input sensor data into a canonical

representation. We call this consistent representation of multispectral data as

multispectral constancy. A preliminary proposal of this concept is provided in

[19].

To achieve multispectral constancy, we use a diagonal transform and also

introduce a spectral adaptation transform (SAT). The concept of SAT being

proposed is closely related to the data based sensor sharpening transform by

Finlayson et al. [20]. The main difference between these strategies is that in-

stead of finding a sharpening transform and then diagonalizing it, we want to

optimize the result after applying the diagonal transform, where the elements

of diagonal transform are obtained from illuminant estimation in the sensor

domain. The proposed idea of multispectral constancy and optimization of

diagonal transform is tested with a simulated multispectral camera on the re-

flectance dataset and hyperspectral images of real scenes from the Foster dataset

[21]. The advantage of having a canonical representation is that the spectral

reconstruction system can be calibrated with a canonical illuminant and hence,

the condition of having same illuminants for training under which the scene is
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acquired, is no longer needed. Results show a promising aspect of the use of mul-

tispectral imaging for outdoor scene acquisition under uncontrolled illumination

condition.

This paper is organized as follows. In Section 2, we define multispectral con-

stancy after formalizing a model for the multispectral image acquisition system.

System calibration and spectral reconstruction are defined as linear problem in

the section. Section 3 defines our experimental protocol based on simulations.

Results are analyzed in Section 4 before we conclude.

2. Multispectral constancy

2.1. Definition

In a simplified noiseless imaging model, formation of an image depends on

the spectral sensitivity of imaging sensor c(λ), spectral reflectance of the surface

r(λ) and the spectral power distribution of illuminant e(λ). This formation for

the visible wavelength spectrum ω is defined as

f =
∫

ω

r(λ)e(λ)c(λ)dλ (1)

In practice, we can formulate an extended and discrete version of Eq. 1 as;

F = REC (2)

Considering the spectral sampling (N) of 10nm within the wavelength range of

400nm to 700nm and K number of spectral channels, F is S ×K matrix (S is

the number of spectral samples), R is S ×N matrix of surface reflectance, E is

the diagonal matrix (N ×N) of the scene illuminant and C is N ×K matrix,

consisting of spectral sensitivities of the channels.
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Here we consider two cases of image acquisition with the same imaging sys-

tem. One image is acquired with a canonical illumination Ec and another image

with an unknown illuminant Eill. We present both cases in parallel in Eq. 3.

Fill = REillC ; Fc = REcC (3)

To perform the spectral reflectance estimation R̂ from the imaged data in both

of the above mentioned cases, a generalized inverse, denoted by +, can be applied

as;

R̂ = FillC+E+
ill ; R̂ = FcC+E+

c (4)

However, C is not necessarily a square matrix and therefore, it is not trivial

to compute the inverse. Computational procedures are applied to achieve the

task of spectral reconstruction. There are several works in literature where the

spectral reconstruction is performed by linear transform through a calibration

matrix. Linear methods are popular for learning the mapping between camera

data and desired output (spectral reflectance). The idea behind using linear

methods is that when the reflectance spectra is continuous and band-limited [10,

13], the statistical analysis of measured reflectances of standard color samples

are enough to calibrate the spectral reconstruction system [14, 22].

By using the calibration matrix W, the equations for spectral reflectance re-

construction become R̂ = FillWill and R̂ = FcWc for both cases, respectively.

This calibration is specific for a given illumination Ec. The scene illuminant

plays a direct role in the spectral reconstruction [7, 23], because of its effect in

the camera image formation, as in Eq. 1.

With Fc, the spectral reconstruction system can work efficiently, since the

calibration is already performed with the same canonical illuminant, but with

Fill, the calibration matrix needs to be recomputed with Eill. Measurement
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of scene illuminant and calibration matrix for each change in imaging environ-

ment is a difficult task and is not a practical solution for a situation where the

illumination is not constant all the time. To avoid this problem, we propose to

transform the acquired multispectral data Fill into a canonical representation

Fc. Thus, Wc can be used for the spectral reconstruction from the multispec-

tral data, being taken under any illumination. We denote such a transform as

Mc,ill, which maps the camera data Fill, taken under unknown illuminant Eill,

into its canonical representation Fc.

Fc = Mc,illFill. (5)

Once such a transform is available, then the problem of spectral reconstruction

is limited to finding the transform Mc,ill. The spectral reconstruction in this

case is mathematically represented as;

R̂ = WcMc,illFill (6)

We call this concept of illuminant invariant representation of multispectral data

as multispectral constancy. By achieving multispectral constancy, the require-

ment of having the same illumination for calibration and scene is no longer

required.

In this work, we propose the use of illuminant estimation for achieving mul-

tispectral constancy. In [19], a diagonal transform is used as Mc,ill and the

preliminary results for spectral reconstruction from the sensor data were pro-

vided. Such a transform requires the estimation of scene illuminant in the sensor

domain and the sensor data is corrected from effects of illumination through a

diagonal transform (D). The diagonal matrix Dc,ill is a K × K matrix and

the components of this matrix are the sensor responses to the illuminations Ec
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and Eill. As an alternate explanation, sensor response to the illuminants can

be understood as the sensor response to a perfect white diffuser under a certain

illuminant, and denoted by wc and will for the two illuminants. The matrix D

is defined as;

Dc,ill = diag(wc/will) (7)

With the use of diagonal transform as in Eq. 7, the problem of color constancy

(for 3-channel images) and multispectral constancy (for multispectral data) is

reduced to the estimation of K parameters of the diagonal transform. D is

applied on each channel independently and is used in many color constancy

algorithms [24, 25].

With a perfect white diffuser, Eq. 5 holds and the input illuminant is trans-

formed into the desired canonical illuminant with a diagonal transform. How-

ever, when the surface reflectance is not constant across the wavelength spec-

trum, then this transformation generates errors. The diagonal transform also

works well when the bandwidth of spectral sensitives of filters are within 100

to 150 nanometers [26, 27]. However, in case of large band filters, the diagonal

transform may not be sufficient. Therefore, we investigate the performance of

diagonal transform and propose to minimize the error during diagonal trans-

formation through a spectral adaptation transform ASAT . The idea of SAT is

to incorporate the sensors response for efficient transformation, along with the

diagonal transform. The concept of spectral adaptation transform is analogous

to chromatic adaptation transform [28], while here we consider multispectral

data, rather than the three-channel color images.
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2.2. Related state of the art

To improve the performance of M for color images, Finlayson et al. [20]

proposed sensor sharpening which aims at finding a linear combination of the

spectral sensitives of a camera, with respect to which a diagonal transform for

illuminant transform works the best. The idea in this technique is to trans-

form the sensor responses so that they appear to be sharper than the original

ones. Finlayson et al. [20] proposed three methods for finding the sharpening

transform T. The first method is called sensor based sharpening, and finds T

by optimizing the intuitive notion of sharpness for each filter individually. This

optimization requires the knowledge of sharpening interval in the wavelength

spectrum and the Lagrange multiplier [20]. The second method is called perfect

sharpening, in which it is assumed that the surface reflectances can be fitted in

a three dimensional linear model while the illuminants can be fitted in a two

dimensional linear model. The third method is data based sharpening, in which

RGBs are generated from a set of known spectral reflectances, using a specific

camera and two illuminations, one as canonical illumination Ec while the other

as test illumination Eill. The sharpening transform T is added on both sides of

Eq. 5 to reduce the error in mapping. It is expressed as;

TFc = MTFill. (8)

According to Eq. 8, M can be optimal in the least-square sense if it can be

defined by the Moore-Penrose inverse (+);

M = TFc[TFill]+ (9)
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Since T is still unknown in Eq. 9, the unknown terms are shifted to the left

hand side;

T−1MT = Fc[Fill]+ (10)

The sharpening transform T is found through eigenvector decomposition of the

expression on left side of Eq. 10. In their work, the expression [T]−1MT is

diagonalized so that M is replaced by a diagonal matrix D. Finlayson et al.

[20] found similar T for sensor based sharpening and data based sharpening.

The sharpening transform can sometimes have negative values and there are

some investigations to reduce this problem [29]. Data based sharpening was

further improved by Barnard et al. [30] by using an average of measured illu-

minants, and introduced a parameter for prioritizing the positivity. Drew and

Finlayson [31] proposed data driven positivity by adding constraints to ensure

that all the values in sharpening transform are positive. Chong et al. [32]

proposed the measurement tensor technique for finding T. Spherical sampling

[33] is also introduced as a technique for spectral sharpening where the dis-

cretely sampled points on a sphere are found and related to the original sensors.

Sharpening through filter chart calibration was proposed by Abdellatif [34]. An

overview of spectral sharpening methods is provided by Corral and Bertalmío

[29].

In case of multispectral imaging, the concept of spectral sharpening is not

straightforward due to the higher dimensionality of sensors. In [33], spectral

sharpening for six multispectral sensors is discussed. Their method is computa-

tionally expensive since there is need to generate a sphere of the sensor dimension

which is not trivial. For a dimension above 3, the spherical sampling [33] has

to be extended to hyper-sphere computation. Due to these complications, we

do not use the sensor based sharpening method. We do not use the data based
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sharpening method either, because we are not interested in diagonalizing the

result of Eq. 10. Instead, we are using D as the diagonal matrix containing the

illuminant in the sensor domain, as in Eq. 7, and to improve the efficiency of

such a transform in the same way as in spectral sharpening. It can be argued

that instead of improving the diagonal transform, why not find any other linear

transform which can serve the same purpose more efficiently? The reason for

preferring the diagonal transform (and its improvement) in our work is the fact

that knowledge of scene illuminant is of major importance in computer vision

applications. Therefore, either it can be measured for a specific scene or can be

estimated, and this information can be used by our proposed method. Another

reason is that most of the color constancy algorithms are defined in terms of a

diagonal transform, where the elements of diagonal transform are found through

illuminant estimation in the sensor domain.

For achieving illuminant invariant representation in multispectral imaging,

Abrardo et al. [35] proposed the concept of color constancy for multispectral

imaging by linearly transforming the sensor response under an unknown illu-

minant. The transformation matrix M is determined through the least-square

solution as;

M = FcF+
ill = FcFt

ill(FillFt
ill)−1 (11)

The transformation M is applied to the acquired multispectral data and then

spectral reflectance is estimated. It is interesting to note that the right side of

Eq. 11 resembles with the concept of data based sharpening (Eq. 10). This

method works well when the canonical representation (Fc) for the same scene

is available. In [35], authors claim that 97% accuracy in spectral reconstruction

is achieved by their method. The problem with this technique is that in the

absence of Fc, it is not possible to use Eq. 11. In fact, our aim is to transform
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the input multispectral data into its canonical representation, while in Eq. 11,

the availability of canonical representation of same scene is assumed, which is

not feasible for every image being captured.

2.3. Proposal for computation of M

It can be observed that Eq. 10 and 11 are originally formulated from Eq.

5 and the goal is to find the transform M. In spectral sharpening, M is found

by eigenvector decomposition of Eq. 10 and diagonalizing it, while the product

of Fc and Fill is used directly in Eq. 11. We propose decomposing M into two

elements; Dc,ill as in Eq. 7 and ASAT . In this proposed method, the diago-

nal transform performs the transformation of multispectral data taken under

unknown illuminant Eill, into its canonical representation under the illuminant

Ec. The role of ASAT is to incorporate the spectral response of imaging sensors

and improve the transformation of camera data into its canonical representa-

tion. The optimal ASAT should minimize the error for all reflectances i and

illuminants j.

Fi
c = ASAT Dc,jFi

j (12)

To find the best ASAT , Eq. 12 is written as the explicit minimization of an

error function in Eq. 13;

min
ASAT

=
∑

j

|Fi
c −ASAT Dc,jf i

j | (13)

For a given sensor configuration, a generic ASAT is created by minimizing the

error for all the reflectances and illuminations in the training dataset.

The advantage of our proposed technique is that only the knowledge of

sensor sensitives of camera is required to compute ASAT . This specific ASAT

for a camera can be used to transform the multispectral data captured under any
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illuminant, into its canonical representation through the diagonal correction for

illumination. The only parameter left in the proposed system is the performance

of illuminant estimation algorithm, since the elements of diagonal transform are

obtained through the illuminant estimation.

The multispectral data being acquired under any illumination is transformed

into a canonical representation after estimating the scene illuminant, and then

the pre-calibrated Wc is used. The advantage of our proposed idea of multi-

spectral constancy is that it is no more necessary to acquire the multispectral

data in a controlled environment.

Once the transform Mc,ill = ASAT Dc,ill is defined, spectral reconstruction

can be mathematically represented as;

R̂ = WcASAT Dc,illFill (14)

Preliminary results by using the diagonal transform Dc,ill are provided in [19].

In the current work, we are using Dc,ill along with ASAT . The experimental

protocol for testing the idea of multispectral constancy through SAT is provided

in the following section.

3. Experiments

To implement and validate the idea of multispectral constancy through SAT,

we use measured reflectance data of 1995 surfaces from the SFU reflectance

dataset [36]. These surfaces include the 1269 Munsell chips, 24 patches of the

X-rite ColorChecker, 170 natural objects [37], 120 Dupont paint chips [37], 350

surfaces from the Krinov dataset and 57 surfaces measured by Barnard et al.

[36]. This dataset is used as the training data for calibration of Wc with D65

as the canonical illuminant. The reflectance data is in the wavelength range of

400 to 700 nm with 10 nm sampling.
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For testing the proposed idea of multispectral constancy, we use 24 patches

from the X-rite ColorChecker and 1296 Munsell chips as the test data and

acquire them using the simulated multispectral sensors. Spectral reconstruction

is done from the acquired multispectral data as in Eq. 14. To validate the

usefulness of proposed idea for natural outdoor images, we use the reflectance

data from Foster dataset of hyperspectral images [21]. These hyperspectral

images are within wavelength range of 400 nm to 720 nm, but we use these

images within wavelength range of 400 nm to 700 nm, since the training dataset

[36] is within this range. In the following sections, the details of experimental

setup are provided.

3.1. Sensor

Diagonal transform works well when the sensor sensitives are narrow-band

(ideally Dirac delta functions). Following this, it seems as the use of narrow

band filters is the optimal choice to be used in imaging systems. The term

FcFt
ill in Eq. 11 resembles the spectral sharpening, introduced by Finlayson et

al. [20]. They proposed a linear combination to transform the original sensor

responses into narrower bands. However, from a practical point of view, one

reason for not employing such narrow band systems is that the acquisition time,

complexity and cost of such system is high as compared to wide band systems

[38]. Other reasons are the fact that the narrow band systems are not an optimal

choice for illuminant estimation [16, 17] and demosaicing (when multispectral

filter array is used [39]). Wang et al. [40] studied the influence of increase

in number of bands and found that increasing the number of spectral bands

cause reduction in performance of spectral reconstruction. Also, the efficiency

of illuminant estimation algorithms decreases when the number of spectral fil-

ters is increased [17]. In this work, we are limiting the experiments to linear

systems and our aim is to investigate the concept of multispectral constancy
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for a generalized multispectral imaging system. We use 5, 8 and 12 spectral

bands for testing the proposed framework of spectral constancy. In the results

of illuminant estimation in multispectral images by Khan et al. [17], the accu-

racy of illuminant estimation is reduced when the number of spectral bands is

increased beyond 8. On the other hand, having more than 8 bands still increase

the spectral estimation. For this reason, we limit the number of bands within

this range for our experiments.

In our experiments, we use a Gaussian model of sensor sensitivities. Such a

model has been extensively used in the literature to simulate sensors or to ap-

proximate Fabry-Pérot filter transmittance [41]. This configuration is called the

equi-Gaussian [16]. This sensor configuration is tested for illuminant estimation

[17] and spectral estimation [19]. The Full Width at Half Maximum (FWHM)

of the sensor sensitivities decrease with increase in number of bands and the

overlap between adjacent bands remain approximately the same. By increasing

the number of bands (K) in this configuration, we are gradually shifting from

typical multispectral sensors towards hyperspectral sensors.

For testing the proposed method of SAT for spectral reconstruction, we also

use measured sensitivities of a real implementation of spectral filter array (SFA)

camera [42]. There are eight filters in this SFA camera. The first six filters are

used in our experiments as the available spectral reflectance data for training

(SFU dataset) is within the wavelength range of 400 nm to 700 nm. Figure 1

shows the spectral sensitivities of each filter being used in the experiments.

3.2. ASAT computation

For a given sensor configuration, ASAT is computed by using the set of 102

illuminants and surface reflectance of 1995 surfaces from the SFU data [36].

Radiance data is generated using an illuminant j (from the set of 102 illumi-

nants) and is acquired as multispectral data. For each illuminant, a diagonal
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Figure 1: Spectral sensitivities of the filters being used

transform is created by using Eq. 7 and the multispectral data under that illu-

minant is transformed by using Eq. 5. The desired output after applying Mc,ill

is the multispectral data under the canonical illuminant (D65). As discussed in

Section 2.3, we propose to decompose Mc,ill into diagonal transform Dc,ill, and

ASAT . This ASAT is unique for a given sensor configuration and is computed

by using Eq. 13. Once ASAT is computed, Eq. 12 is used to transform Fill into

Fc. ASAT for each sensor configuration being tested in this work is provided in

the supplementary data file (Supplementary_Data.xlsx).

3.3. Illuminant estimation

For testing and validating the proposed concept of spectral adaptation trans-

form, we keep Dc,ill fixed for the spectral reflectance data. For obtaining the

elements of Dc,ill, we use the test and canonical illuminants in the sensor do-

main. Initially we want to validate the efficiency of ASAT while testing the

reflectance dataset, therefore we assume that the illuminant is estimated in the
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sensor domain without error.

In practical cases, the information about scene illumination may not be

available all the time. This is where the illumination estimation algorithms

come into play. By using an illuminant estimation algorithm, the elements of

diagonal transform are obtained and then the pre-calculated SAT is used.

For testing the proposed concept for natural scenes, we perform illuminant

estimation in the multispectral data of natural scenes and use the Max-Spectral

Algorithm, which is the extension of Max-RGB algorithm [43]. The extension

of this algorithm from color to spectral is proposed and analyzed in detail in

[16, 17]. The estimated values of illuminant, which are defined in the sensor

domain, are used in the diagonal transform Dc,ill. For each image, Dc,ill is

estimated individually and this estimation may consist of error as well. We

report the error in illuminant estimation in form of angular error (∆A).

3.4. Spectral reflectance reconstruction

As explained in Section 2, a calibration matrix W is required for the spectral

reconstruction from camera data. It is obtained by using measured reflectance

spectra Rt and the camera sensor sensitivities (M). For reducing the error be-

tween original spectra R and the estimated spectra R̂, a covariance matrix of

a set of measured reflectance samples can be used. Those measured reflectance

samples provide the a-priori statistical information about the surfaces in a scene

[44]. If the a-priori information is well chosen, error in the spectral reconstruc-

tion can be minimal.

There are several methods being proposed for the spectral reconstruction in

literature [45]. We use a linear method for clarity, namely the Wiener estimation

[46] because of its robustness to noise. It is defined as

W = RtRT
t (CE)T ((CE)RtRT

t (CE)T + G)−1. (15)
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Here, RtRT
t and G are the autocorrelation matrices of the training spectra and

additive noise, respectively. G is in the form of a diagonal matrix consisting of

the variance of noise σ2. Training for obtaining the matrix Wc is performed with

CIE illuminant D65 as the canonical illuminant Ec. The obtained calibration

matrix is used for spectral reconstruction in Eq. 14.

3.5. Evaluation

For testing the proposed idea of multispectral constancy, radiance data is

simulated from the measured test spectra with CIE illuminants A, D50, D55,

D75, F5, F7 and F12. We also use the LED (Philips SlimStyle: 2700K) as an

illuminant in the experiments.

The proposed idea is also tested on hyperspectral images of scenes consisting

of vegetation and urban areas. We create radiance data from these images

using illuminants A, D50, D55 and D75. The same procedure of reflectance

reconstruction for each pixel of simulated multispectral image is performed and

evaluated.

To measure the performance of the spectral reconstruction, we compare the

reconstruction r̂ for each patch of the reconstructed reflectance with the cor-

responding measured reflectance r, through root mean square error (RMSE)

as

RMSE =

√√√√ 1
N

N∑
j=1

(rj − r̂j)2 (16)

We also use goodness of fit coefficient (GFC) [47] for evaluation of spectral

reconstruction results. For each reconstructed reflectance r̂, GFC is calculated
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as

GFC = rT r̂√
(rT r)(r̂T r̂)

. (17)

In case of the multispectral images from Foster dataset, RMSE is calculated

for each pixel of the estimated reflectance, with the original reflectance in the

hyperspectral image. We also compute the colorimetric error by a linear map-

ping of the reflectance data into its corresponding CIEXYZ. The CIEXYZ is

converted into CIELab by taking white point of D65. Error between CIELab

from the original reflectance and reconstructed reflectance is calculated in terms

of CIEDE2000 [48]. For each evaluation metric, we include three methods. First

method is by doing nothing to the input multispectral data and using Eq. 15 for

spectral reconstruction. We call this method as do nothing. In second method,

simple diagonal transform is applied to the input data before using it for spectral

reconstruction, while in the third experiment, the input data is first transformed

by using the proposed SAT. Results are discussed in Section 4.

4. Results

The results of spectral reconstruction of Munsell reflectance data, by using

eight different illuminations and four different sensor configurations, are shown

in form of graphs in Fig. 2, consisting of mean RMSE, mean GFC and mean

CIEDE2000. For each test illuminant, we compare the spectral reconstruction

results after applying diagonal transform to the input multispectral data, SAT

and do nothing. The RMSE results show that for illuminant A, the diagonal

transform reduces the error as comparing to do nothing, but for illuminants

D50, D55 and D75, applying only a simple diagonal transform significantly in-

creases the error in spectral reconstruction as compared to when the SAT is

applied. There is slight increase in RMSE with the use of diagonal transform

18



for illuminants F5, F7 and F12, while there is no change in error when LED is

used as illuminant source. These results show that in terms of RMSE, applying

diagonal transform to input multispectral data increases the error in compar-

ison to do nothing. This trend is consistent among the 5, 8 and 12 channel

cameras being used. Results obtained from simulated 6 channel SFA camera

also show similar results. When our proposed SAT is used along with diagonal

transform on the input multispectral data, then RMSE is reduced significantly.

By increasing the number of channels, there is further reduction in RMSE for

all illuminants except F12, where RMSE is minimum when 8 channels are used.

Overall, the significant reduction in RMSE shows the efficiency of our proposed

SAT for spectral reconstruction.

When the spectral reconstruction is evaluated in terms of GFC, diagonal

transform and SAT perform closely. Do nothing performs lower for illuminants

A, F5, F12 and LED while the performance difference is less significant for other

test images. There is no change in performance by increasing the number of

channels, except for illuminant F12, where the performance of do nothing goes

down by increasing the number of channels. The increase in error for do nothing

is because the bands become more sensitive to illumination changes when they

get narrower.

Colorimetric evaluation of the spectral reconstruction reveals the interesting

fact that there is no difference in do nothing and applying the diagonal trans-

form. Error in terms of CIEDE2000 for both diagonal transform and do nothing,

is increased slightly when the number of channels are increased from 5 to 12.

However, applying SAT significantly reduces the colorimetric error, as can be

seen in Fig. 2. The performance of SAT behaves opposite to other two methods

and error is slightly reduced with increase in number of channels.

For testing the proposed idea of multispectral constancy on images contain-
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ing real scenes, we use the Foster hyperspectral reflectance data [21]. We use

four different sensor configurations as simulation of multispectral camera for

acquiring the data. Sensor configuration for these cameras is shown in Fig. 1.

Before acquiring the multispectral data, each hyperspectral reflectance image is

converted into radiance image by applying an illuminant. We use illuminants

A, D50, D55 and D75.

Illuminant estimation in each multispectral image is performed by using the

Max-spectral algorithm [17]. Diagonal transform is applied to each multispec-

tral image with the estimated illuminant. That estimated illuminant contain

error which is evaluated in terms of angular error (∆A). Fig. 3 show the per-

formance of spectral reconstruction in terms of mean RMSE, mean GFC and

mean CIEDE2000 of the eight images being tested. Detailed results along with

∆A are provided in the supplementary data file.

With the Foster dataset, the error in spectral reconstruction is larger than

the results of Munsell dataset. The main reason is the error in illuminant estima-

tion. As the elements of diagonal transform are an estimation of the illuminant,

therefore the error in illuminant estimation is intensified in the spectral recon-

struction as well. Fig. 3 show RMSE results for 5, 8, 12, and 6 (SFA) channels,

respectively. Do nothing and simple diagonal transform produces almost simi-

lar results except for multispectral data acquired with 8 channels. In that case,

simple diagonal transform performs better as compared to do nothing. RMSE is

reduced significantly when SAT is used, which shows that our proposed method

performs effectively in reducing RMSE.

In terms of GFC, do nothing performs better than simple diagonal transform,

except for illuminant A, where the do nothing performs significantly lower. Same

trend can be seen across all four sensor configurations being tested. SAT is able

to perform slightly better than diagonal transform and do nothing. Evaluation
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in terms of CIEDE2000 shows that do nothing and simple diagonal transform

performs same except for 5 channels, where error is increased when diagonal

transform is used. By using the proposed SAT, there is decrease in CIEDE2000

which shows that the proposed idea is valid with images containing real scenes.

Although the colorimetric error is still large, but it should be kept in mind

that inaccuracy in illuminant estimation also play its role in the overall error in

spectral reconstruction. The average RMSE with 5 and 12 channels are almost

equal and the same result in obtained with SFA, while RMSE is comparatively

larger when 8 channels are used. In terms of colorimetry, the error is reduced

gradually by increasing the number of channels. When simple diagonal trans-

form is used then CIEDE2000 remains almost equal for 8 and 12 channels while

the error is reduced for all sensor configurations when SAT is used. Therefore,

by increasing the number of filters, there is slight improvement in the spectral

reconstruction results. However, the performance may become more sensitive

to the imaging noise. Those results are based on simulations and are still to be

validated for the experimentally captured multispectral data. Detailed results

from the experiments, including the angular error in illuminant estimation for

each image, mean and maximum errors of RMSE, GFC and CIEDE2000, are

provided in the supplementary data file.

In most of the illuminant estimation algorithms proposed in literature, the

efficiency of algorithm is evaluated in the terms of angular error ∆A and a

diagonal transform is applied to the input images. In most of the cases, the

transformed images appear to be taken under a canonical (usually white) illu-

minant and it is assumed that the effect of scene illuminant is removed through

the diagonal transform. Results from our experiments show that a simple diago-

nal transform is not sufficient. For illustration, we show an example of radiance

image from Foster dataset and the corresponding transformations (Fig. 8. In
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this example, the color rendering of radiance spectral image with test illumina-

tion and reconstructed spectral images (after applying diagonal transform and

SAT), are shown. D55 is used for creating the radiance scene and multispectral

image is acquired with 12 equi-Gaussian channels Illuminant estimation gives

∆A of 0.1013. As can be seen in Fig. 8, the effect due to D55 is removed

after the transformations and the output images appear to be almost the same

visually but the RMSE, GFC and CIEDE2000 evaluation shows that there is

difference among these 2 images in terms of spectra and colorimetry. This sug-

gests that the effect of such transformations has to be verified in computer vision

applications.

To visualize the reconstructed spectra, eight examples are provided in Fig.

4, 5, 6 & 7. In each Fig. two sample spectra for one image of Foster dataset are

shown. These samples are selected on the basis of best and worst GFC values.

Each Fig. provides the comparison between the measured spectral reflectance

and the spectral reconstruction results with do nothing, simple diagonal trans-

form and SAT. For each figure, the measured values of ∆A, GFC and RMSE

are provided in the captions.

The reconstruction results using simple diagonal transform and SAT match

closely, while the do nothing results are significantly lower, as they are not close

to the measured spectra in terms of shape and scale. This observation shows that

with illuminant estimation and then applying the transformation into canonical

representation has the clear advantage. Upon a careful comparison, it can be

seen that by applying SAT, the scale of reconstructed spectra is brought closer

to the original spectra. This explains the reason that why our proposed SAT is

able to reduce the error in spectral reconstruction. The visualization of spectra

shows that with the use of SAT, there is no significant difference in the shape of

reconstructed spectra. The main difference is in scale of intensity, which explains
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Figure 4: Spectral reconstruction of 2 sample spectra from Foster dataset (image 7). Illumi-
nant D55 is used to create radiance data, simulated multispectral camera with 5 equi-Gaussian
filters is used and illuminant estimation error ∆A is 0.0162

that why GFC remains same while RMSE and CIEDE2000 metrics provide

different results. One of the drawbacks of using linear method for spectral

reconstruction is its limitation in reconstruction of spectra containing spikes.

Linear spectral reconstruction assumes smooth spectra and provides a smoothed

approximation to the input spiky spectra. This effect can be seen in Fig. 4b,

5b, 6b & 7b, where the linear reconstruction is unable to address the spikes in

the measured spectra.

These observations lead to the question that what is the purpose of color and

multispectral constancy. If it has to be applied for visual correction only, then

a simple diagonal transform may be efficient, as seen in Fig. 8. If the purpose is

to reconstruct the spectral reflectance, then a simple diagonal transform is not

helpful while GFC metric indicates that there is slight improvement when simple

diagonal transform is used. Evaluation in terms of CIEDE2000 indicates that

the results with do nothing and diagonal transform are the same. However,

all the evaluation metrics show that the proposed SAT is able to reduce the

error significantly. Having said this, the next goal is to investigate that what is

the role of improving the currently used evaluation metrics in computer vision
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Figure 5: Spectral reconstruction of 2 sample spectra from Foster dataset (image 4). Illumi-
nant D50 is used to create radiance data, simulated multispectral camera with 8 equi-Gaussian
filters is used and illuminant estimation error ∆A is 0.0373
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Figure 6: Spectral reconstruction of 2 sample spectra from Foster dataset (image 6). Illumi-
nant A is used to create radiance data, simulated multispectral camera with 12 equi-Gaussian
filters is used and illuminant estimation error ∆A is 0.0545
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Figure 7: Spectral reconstruction of 2 sample spectra from Foster dataset (image 8). Illumi-
nant D75 is used to create radiance data, simulated multispectral camera with 6 SFA channels
is used and illuminant estimation error ∆A is 0.0884

Figure 8: Color rendering of multispectral image acquired with 12 channels. Images from left
to right: Rendering under illuminant D55, Diagonal transform, SAT. ∆A is 0.1013

applications, such as object detection and material identification.

5. Conclusion and perspectives

In this work, we propose the concept of multispectral constancy, which de-

fines the illuminant invariant representation of multispectral images. Multispec-

tral constancy is achieved through a spectral adaptation transform (SAT), which

transforms the data representation from an unknown illuminant, to a canonical

one. This SAT is obtained by training the system. Advantage of the proposed

technique is that the only information required is the sensor sensitivities of

imaging system.
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With the idea of multispectral constancy being developed, what needs fur-

ther attention is the establishment of efficient illuminant estimation methods

for multispectral imaging. The proposed framework for spectral reconstruction

is sensitive to accuracy in illuminant estimation. This dependency is seen when

spectral reconstruction is performed on the images from Foster dataset. The

performance of SAT is affected with error in illuminant estimation and this

dependency may be addressed through development of efficient illuminant es-

timation algorithms. Once such an efficient illuminant estimation algorithm in

the sensor domain is available, our proposed SAT is able to show efficient results

as demonstrated in the simulations.

The colorimetric difference also needs to be investigated so that an accept-

able level of accuracy for color based systems can be achieved. Finally, it has

yet to be investigated that what level of accuracy is required in the spectral re-

construction so that the estimation can be used for spectral information based

applications. Such an application can be object detection and identification on

the basis of its spectral properties. Hence. our proposed idea of multispectral

constancy is opening research questions which needs to be investigated, in order

to enable the generic use of multispectral imaging for real-world applications.

Improvement in results can be done by carefully selecting the training data

which can represent the objects in the scene. In this way, the SAT and spectral

reconstruction system can be calibrated for a specific scenario. We did not work

on improvement in selection of training data in this work as our main aim is

to study the effectiveness of proposed idea of multispectral constancy and SAT

under general conditions.

Simulation results show that for unimodal sensitivities and linear sensor,

the proposed SAT is an adequate transform and permits to achieve efficient

reflectance reconstruction. However, when the SAT is evaluated based on an
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estimate of illumination, error in illuminant estimates makes the performance to

decrease. It is still to be investigated that what accuracy is required for illumi-

nant estimation to make this concept beneficial. Further work shall investigate

these directions and define the limits of using this approach.
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