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Abstract: Multispectral constancy enables the illuminant invariant representation of multi-
spectral data. This article proposes an experimental investigation of multispectral constancy
through the use of multispectral camera as a spectrophotometer for the reconstruction of surface
reflectance. Three images with varying illuminations are captured and the spectra of material
surfaces is reconstructed. The acquired images are transformed into canonical representation
through the use of diagonal transform and spectral adaptation transform. Experimental results
show that use of multispectral constancy is beneficial for both filter-wheel and snapshot multi-
spectral cameras. The proposed concept is robust to errors in illuminant estimation and is able to
perform well with linear spectral reconstruction method. This work makes us one step closer to
the use of multispectral imaging for computer vision.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

With advancements in the sensor technology, use of multispectral and hyperspectral imaging is
developed for close-range imaging applications. Multispectral imaging is used to capture more
spectral information from a scene as compared to conventional color images. Recently emerging
snapshot technologies, such as the spectral filter arrays [1, 2], enable a broader range of usage
domains for multispectral imaging. The ability of multispectral imaging in acquisition of better
spectral resolution is useful for material classification and identification by means of spectral
reconstruction [3–7] of surfaces in a scene.

Acquisition of reflectance spectrum of a surface can be performed with a spectrometer as well
but it provides spectral information of a single point. Hyperspectral camera is another option
for obtaining high resolution radiance data. This data can be transformed into reflectance data
through calibration of the imaging system for the illumination. A hyperspectral imaging system
is complex both in terms of hardware and data. Multispectral imaging provides the intermediate
solution as such a camera can be easily be used as a hand held device. The trade-off in this
solution is lower number of spectral channels as compared to a hyperspectral image and thus,
less spectral information.

The advantage of spectral reconstruction of surfaces was recognized in the 1980s [8, 9]. Since
then, many methods are developed to provide spectral reconstruction from the camera data. Most
of these methods rely on the use of training data to learn the mapping between camera data and
the desired spectra. This process is called calibration of the system and is performed through
a training set of measured reflectances and radiance data with a given illuminant. In most of
such systems, smooth spectra of natural objects and illuminations is assumed. To maintain a
reasonable accuracy, the same illuminant is required during the scene acquisition [6, 7, 10–12].
This limitation of having the same illuminant for calibration and image acquisition is a major
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shortcoming for the generic use of multispectral imaging [12]. To address this issue, the idea of
multispectral constancy is recently proposed by Khan et al. [13–15].

In this paper, we are demonstrating the ability of multispectral constancy to provide illuminant
invariant representation. So far, the use of multispectral cameras is limited to remote sensing
and indoor laboratory conditions. Knowledge of scene illumination is one of the constraints
and generally it is either assumed to be constant (as in case of remote sensing) or measured
separately, before processing the acquired multispectral data. Extending the use of multispectral
imaging system from heavily constrained environments to real world applications is still an open
challenge.

For the demonstration of multispectral constancy, three scenes are created in a viewing booth
and are acquired through a multispectral camera under five different illuminations. Estimation
of scene illuminant is performed and the multispectral data is transformed into a canonical
representation. A linear method is used for spectral reconstruction by using a calibration matrix
which is formed with the canonical illuminant. This method allows the use of multispectral
camera as a spectrophotometer and its use in the uncontrolled imaging environment. Results show
that the use of multispectral constancy for image transformation into a canonical representation
improves the spectral reconstruction results.

2. Multispectral constancy

In this work, we consider a simplified imaging model. We assume that there are no deformations
due to optics, electronics and any other distortions in the image during acquisition. In such a
model, the acquired image value at a pixel f is dependent on the surface reflectance r(λ), light
source e(λ) and the camera sensitivity s(λ)

f =
∫
ω

e(λ)r(λ)s(λ)dλ. (1)

In practice, we can formulate a discrete version of Eq. (1);

F = RES. (2)

Here F is the image, R is the spectral reflectance of a surface, E is the scene illumination, and S
represents the sensor sensitivity of the camera. Due to the dependence of scene illuminant, the
captured color of objects generally changes when observed under different light sources. The
human visual system has the natural ability to perceive constant color of surfaces despite the
change in spectral composition of the illuminant [16] and this ability to discard illumination
effects is known as “Color Constancy” [17]. Creating such model for a computer vision system
is called “computational color constancy”. This concept is extended for multispectral images
by Khan et al. [14] and is called multispectral constancy. The purpose of such a system is to
represent illuminant invariant representation of images. It can be achieved either by exploiting the
illuminant invariant features in images or by estimating the scene illumination and then removing
its effect. In this work, we follow the second approach.
From the imaging model given in Eq. (1), illuminant in the sensor domain is given as:

e =
∫
ω

e(λ)s(λ)dλ. (3)

Illuminant in the sensor domain can be measured by using a white diffuser in the scene. It
is a commonly used practice during calibration of multispectral and hyperspectral cameras in
laboratory conditions. However, it is not always feasible if the camera is used outdoors. In the
absence of a white diffuser, the scene illuminant has to be estimated [18]. After that, correction is
applied to the acquired image in order to represent it as it would have been taken under a known
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light source. For color images, this process also expressed as “discounting the chromaticity of
the illuminant” by D’Zmura and Lennie [19]. This transformation is performed as

Fc =Mc,illFill, (4)

where Fill is the image taken in unknown light source and Fc is the transformed image as if
taken under a canonical illuminant, while Mc,ill is the transformation matrix, which maps colors
from captured image to their corresponding colors under a known illumination. Mc,ill consists
of two parts, one is the diagonal transform Dc,ill where the components of this transformation
matrix are the sensor responses to the illuminations Ec (canonical illuminant) and Eill (scene
illuminant). It is represented by

Dc,ill = diag(Ec/Eill). (5)

The second component of Mc,ill is the spectral adaptation transform (SAT). It is represented by
ASAT and its purpose is to incorporate the intrinsic properties of imaging sensors [14]. SAT
is computed by finding a matrix that can minimize the error between camera data and the
corresponding reflectance. A set of measured reflectances for training, the sensor sensitivities
and a canonical illumination are used during the computation of SAT [14].

Once the components of Mc,ill are computed, the input multispectral data is transformed into
its canonical representation

Fc =Mc,illFill = ASATDc,illFill . (6)

Using this transform, the problem of spectral reconstruction is limited to finding the transform
Mc,ill . The spectral reconstruction in this case is mathematically represented as;

R̂ =WcMc,illFill (7)

where Wc is the calibration matrix for spectral reconstruction. Details of Wc is provided in
Section 3.5.
Multispectral constancy is analyzed in simulations by Khan et al. [14] and it is taken at the

experimental level in this paper. Multispectral data is acquired for three scenes with varying
illuminations and processed through the mltispectral constancy framework. The results are
through spectral reconstruction of material surface reflectances in the scene. Details of the
experimental setup are discussed in the following section.

3. Experimental setup

3.1. Objects and surfaces

For the demonstration of multispectral constancy, reflectance data of various objects is acquired
through hyperspectral camera. The detail of those objects, image acquisition and reflectance
computation is provided in [20]. The reflectance data of those objects is used as ground truth
data for matching the performance of spectral reconstruction of the corresponding surfaces from
multispectral images.

3.2. Scenes setup

To create complex scenes, the same objects are placed in a viewing booth. Three scenes created
for capturing various materials. They consist of a scene of kitchen containing utensils, spices
and pieces of clothes, and two scenes with different combination of textiles. The scenes are set in
a viewing booth (GretagMacbeth Spectralight III) and each image is captured with illuminant
A, D65, horizon light, coolwhite and TL84 illuminant. In Fig. 1, color illustration of those
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(a) Kitchen scene. (b) Textile_1 scene.

(c) Textile_2 scene.

Fig. 1. Color rendering of the scenes created in viewing booth and rendered under D65
illuminant.

scenes is shown by using the linear mapping from N dimensions to 3 dimensions. This method
is described in [21]. The multispectral images will be made available to public through the
website of Colorlab as CID:MC, after the acceptance of paper. These images are shown with the
simulation of illumination D65.

3.3. Image acquisition

After setting up the scenes in viewing booth, a multispectral filter wheel camera (Pixelteq
Spectrocam™) [22] is used to acquire multispectral images. For our experiments, we use the
channels in the visible range. Sensitivities of the filters from the multispectral camera are shown
in Fig. 2. During acquisition of multispectral image from a filter-wheel camera, the exposure
time for each channel is set individually. The reason for doing so is to acquire the maximum
information in terms of contrast and brightness [23]. In our experiments, the exposure time for
each channel is set empirically by observing the histogram of a particular channel and avoiding
over-exposure and under-exposure as much as possible. The exposure time for each channel
is changed with the change in illumination. By doing so, the compensation for illumination is
already partially incorporated into the resultant multispectral image. However, this is not the case
for snapshot cameras, such as the spectral filter array camera [24], since the sensor integration
time is same for all of the channels. In the experiments, we compare results of manually adjusted
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Fig. 2. Camera sensitivity (including the filters and sensor) in the visible range. X-axis
show the wavelengths (in nm), while y-axis show the relative intensity. (Data taken from
manufacturer).

integration time with a simulation of snapshot camera to analyze the difference in both imaging
techniques. The simulation for snapshot camera is created by normalizing the integration time
for all the channels so that they appear to be taken with the same integration time.
Another issue is the “chromatic aberration” effect along channels which results in blur.

Snapshot multispectral cameras also face the same problem [25]. In filter-wheel multispectral
camera, this issue is resolved by focusing the lens for each channel individually and then
combining the resulting images to ensure that the images for each channel are as sharp as possible.
The unfavorable effect of this process is the slight translation distortion. This distortion can be
corrected through modeling the aberrations caused by filters placed in front of the lens [26, 27].
However, in the experiments we do not perform it because we selected the surfaces manually and
made sure that the selected regions do not contain edges. By doing so, we focus the experiments
on spectral reconstruction of the selected surfaces while ignoring the geometric distortion at the
edges.

3.4. Illuminant estimation and image transformation

In the work on illuminant estimation in multispectral imaging by Khan et al. [18], four algorithms
based on the statistics based illuminant estimation method were extended for multispectral
imaging. They found that spectral gray-edge algorithm, which is the extension of gray-edge
algorithm [28], is robust and performs better than the other three algorithms tested in their work.
Based on their observations, we use the spectral gray-edge algorithm for estimation of scene
illuminant. The spectral gray-edge algorithm assumes that the average of reflectance derivative
of each channel of the multispectral image is achromatic. This algorithm is expressed as:(

[
∫
[Fσ]pdx∫

dx

)1/p

= ê, (8)

where Fσ is the smoothed image, after applying a Gaussian filter and p is the order of the
Minkowski norm. In our experiments, we use p = 5 and σ = 2. These values are obtained in the
simulations performed in [18]. Scene illuminant is estimated in the sensor domain after masking
out the ColorChecker from the scene.
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In this work, we assume uniform illumination all over the scene. However, in a real scenario,
the spectral power distribution of illumination can differ at various locations in an image. There
are various methods for dealing with such situations that address illuminant estimation a per-pixel
level [29–31]. In our current work, we are demonstrating the multispectral constancy pipeline
from image acquisition to the spectral reconstruction. This pipeline consist of several parts, and
there is much room for further improvements in each module of this pipeline. Since our aim is to
verify the effectiveness of multispectral constancy through real multispectral images in this work,
we do so by limiting the experiments by assuming uniform illumination over the scene. Another
important factor to mention is that we do not estimate the spectral power distribution of the scene
illumination. The illuminant estimation is performed in the sensor domain in our experiments.
Once it is verified that our proposed method is able to perform, the next step will be to improve
the illuminant estimation and spectral reconstruction methods.

3.5. Spectral reflectance reconstruction

For spectral reconstruction of material surfaces from the camera data through linear method, a
calibration matrix W is required. It is obtained by using measured reflectance spectra Rt and
the camera sensor sensitivities S. For reducing the error between original spectra R and the
estimated spectra R̂, a covariance matrix of a set of measured reflectance samples can be used.
Those measured reflectance samples provide the a-priori statistical information about the surfaces
in a scene [32]. If the a-priori information is well chosen, error in the spectral reconstruction can
be small.

There are several methods being proposed for the spectral reconstruction in literature [33]. We
use a linear method, namely the Wiener estimation [34] because of its robustness to noise. It is
defined as

W = RtRT
t (SE)T ((SE)RtRT

t (SE)T +G)−1. (9)

Here, RtRT
t and G are the autocorrelation matrices of the training spectra and additive noise,

respectively. G is in the form of a diagonal matrix consisting of the variance of noise in the
form of σ2I, where σ2 is the variance of estimated noise and I is an identity matrix. σ2 is
estimated using the method proposed by Shen et. al [34]. Training for obtaining the matrix Wc is
performed with CIE illuminant E as the canonical illuminant Ec and the SFU spectral reflectance
data [35]. The obtained calibration matrix is used for spectral reconstruction,

R̂ =WcASATDc,illFill . (10)

3.6. Evaluation

To measure the performance of the spectral reconstruction, we compare the reconstruction r̂ for
each selected material surface with the corresponding measured reflectance r, through root mean
square error (RMSE) as

RMSE =

√√√
1
N

N∑
j=1
(rj − r̂j)2 (11)

For further evaluation of the reconstructed spectra, cosine distance [36] is also used to compare
the results with original reflectance spectra. Cosine distance measures the orientation of two
vectors without considering the magnitude and is calculated as

cosine distance = 1 − rT r̂√
(rT r)(r̂T r̂)

(12)
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Cosine distance serves as the compliment of goodness of fit coefficient [37] with 100%
correlation. The correlation of RMSE results with cosine distance is 0.90. Therefore, we report
the results from RMSE in this paper, while the detailed results are provided in the appendix. We
also report the error in illuminant estimation in the form of angular error (∆A). It is computed
between the values obtained from white patch of ColorChecker e and the estimated illuminant ê
in the sensor domain as;

∆A = arccos
eT ê√
(eT e)(êT ê)

(13)

Since we do not have ground truth reflectance values for all of the surfaces in the scene, a binary
mask is applied on each image for selection of those surfaces whose reflectance data is acquired
by the hyperspectral camera. The selected surfaces are shown in Fig. 3. The binary mask is
created for each of the three images individually and sensor values for the selected surfaces are
obtained. In case of surface with varying texture, the mean of measured reflectance is used.
Although this practice may case some errors in the regions containing different reflectance value,
our primary aim is to evaluate the overall performance of multispectral constancy and we do
not perform pixel to pixel mapping for comparison of results. Those values are used further for
spectral reconstruction and comparison with ground truth reflectance of the same material.

4. Experimental results

For the demonstration of spectral reconstruction results, we selected 16 material surfaces from
both “Kitchen” and “Textile_1” images, while 20 material surfaces from the “Textile_2” image.
The reflectance data for these surfaces is acquired from hyperspectral camera and is used as ground
truth for comparison of results. We present results from two imaging techniques in this paper;
one is through the filter-wheel camera where the integration time for each channel is adjusted
manually while the other imaging technique is snapshot camera where all channels are acquired
with the same integration time. We get the snapshot like effect by normalizing the acquired
image through filter-wheel camera with respect to sensor integration time for each channel. It
is assumed that the camera response curve is linear. In this way, all of the channels appear to
be taken with the same integration time. It is important to mention that the approximation for
snapshot camera is modifying the noise on each channel in a multiplicative manner, rather than
being additive. In the experiments, we ignore this effect. Also, we do not consider other effects
like demosaicing and cross-talk between the filters. For each test illuminant, results of spectral
reconstruction are shown for five experiments which are;

• “Do nothing”, when the multispectral data is used for spectral reconstruction, without any
processing.

• “Patch select”, the white patch of ColorChecker is selected manually and those values are
used as the scene illuminant. Data transformation is performed by two methods,

– Using the extracted values in a diagonal transform, Dc,ill

– Using SAT along with the diagonal transform, ASATDc,ill

• “SG-E”, illuminant estimation with spectral gray-edge algorithm and then transforming
the data using;

– Dc,ill with values obtained from illuminant estimation.
– Using SAT along with the diagonal transform, ASATDc,ill

Analysis of the results is provided in the following.
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(a) Kitchen image. (b) Rendering of selected surfaces from Kitchen
image in color.

(c) Textile_1 image. (d) Rendering of selected surfaces from Textile_1
image in color.

(e) Textile_2 image. (f) Rendering of selected surfaces from Textile_2
image in color.

Fig. 3. Binary masks and the rendering of selected surfaces in color for the three images
used in experiments. The whole scenes are shown in Fig. 1. Ground-truth for the selected
patches is taken from hyperspectral dataset in [20].
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Fig. 4. Mean of RMSE from all the illuminants used in experiments.

4.1. Influence of the imaging technique

It is a standard practice to adjust the integration time of each channel manually for image
acquisition with filter-wheel camera. The aim is to acquire each channel with minimum saturated
and dark pixels, and to enhance the contrast. Generally the integration time is set through
observation of image and the histogram. On the other hand, a snapshot camera captures the
image data with same integration time for all of the channels. Tables 1, 3 & 5 show results with
manually set integration time for each channel and this time varies for each illumination. Tables
2, 4 & 6 show results obtained after the integration time is normalized for all channels. Based
on the results, it can be seen that while the results with do nothing varies with the change in
imaging technique, the proposed multispectral constancy is robust to change in imaging technique.
Although there are variations in the results of both techniques and it is not possible to conclude
which imaging technique is better, the spectral reconstruction error is reduced when multispectral
constancy is used as compared with do nothing. This observation illustrates the importance of
removing the effect of scene illuminant before using the image data for further analysis.

4.2. Manual selection of white patch vs. illuminant estimation

The results from spectral reconstruction provide an interesting observation that the error in
spectral reconstruction is slightly reduced when correction is applied after illuminant estimation
instead of manual selection of white patch in the ColorChecker. The reason for this effect is due
to the presence of saturated pixels in the channels which results in erroneous transformation
towards the canonical representation. During illuminant estimation, the pixels with peak value
(255 for 8-bit image) are ignored by the spectral gray-edge algorithm and the resultant estimate
of scene illuminant is free from saturated values. In a few cases, the error in reconstructed
spectra is slightly increased when image is transformed through the estimated illuminant. The
reason for it is the error in illuminant estimation itself. Although the improvement in spectral
reconstruction result is not significant when data is transformed by using the estimated illuminant,
it is worth noting that in practical situations, it is not feasible to use ColorChecker with every
image acquisition. The results from illuminant estimation show the strength and robustness of
spectral gray-edge algorithm for illuminant estimation in multispectral imaging and this will be a
key factor in enabling the use of multispectral camera in uncontrolled imaging environment.
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4.3. Performance of spectral adaptation transform

During simulation in [14], SAT showed significant improvement in spectral reconstruction
results. However, the improvement due to SAT in results from our experiments is marginal. The
purpose of SAT is to incorporate the intrinsic characteristics of imaging sensor and address
the inter-channel overlapping. In [14], SAT is able to improve results of simulated overlapping
sensors. The overlapping of filters in the filter-wheel camera used in our experiments is small
as can be seen in Fig. 2. The diagonal transform assumes that there are no inter-channel
dependencies in the camera and each of the channels is treated individually. SAT accounts for
those dependencies and if they are small (as for the filter-wheel camera in our experiments), the
influence of SAT is also low. When we observed the acquired SAT from Eq. (6), we found that
the diagonal entries of this matrix consist of large numbers while the rest of the entries are very
small. This explains why SAT does not change the results significantly in comparison with a
diagonal transform. Nevertheless, based on our theoretical results and simulations in [14], it is
most likely that SAT will improve the spectral reconstruction results significantly when imaging
sensors having large overlapping are used. This will be the case with snapshot spectral filter array
camera, where the cross-talk between the filters and overlapping of the sensitivities of filters are
significant [24].

4.4. Discussion on results

Fig. 4 show promising results in terms of spectral reconstruction from the multispectral images.
Use of multispectral constancy is able to reduce the error significantly as compared to do
nothing. The same effect can be seen in the spectral reconstruction examples in Fig. 5. Spectral
reconstruction results can be improved by improving the accuracy of illuminant estimation,
properly addressing the intrinsic properties of imaging sensor (spectral adaptation transform), and
then by introducing improvements in the spectral reconstruction algorithm itself. In this work, we
used linear method for spectral reconstruction. It is possible to improve the spectral reconstruction
results through the use of non-linear methods, particularly machine learning. However, we will
need a large amount of data for training such a system and once the data is available, the results
will definitely be improved. These results show that a multispectral camera can be used as a
spectrophotometer for outdoor imaging by incorporating the idea of multispectral constancy
in the imaging pipeline. Although we can see marked improvement in spectral reconstruction
results in terms of RMSE and cosine distance, it is yet to be investigated that how much accuracy
is required in order to enable the use of multispectral cameras for computer vision applications.
Use of multispectral constancy for extraction of stable spectral information as a pre-processing
step before the computation of computer vision traditional features will definitely improve the
accuracy and open new paths for research by using multispectral imaging for computer vision
applications.

5. Conclusion

In this paper, we have provided practical demonstration and evaluation of the concept of multi-
spectral constancy. Three different scenes are created in viewing booth and multispectral images
are captured while using different illuminants. The acquired multispectral data is transformed
into canonical representation through manual selection of white patch of ColorChecker in the
image and by estimating the illuminant. Spectral reconstruction is performed by using Wiener
estimation method and results are evaluated in terms of RMSE, cosine distance and spectral
angle mapper. Results show a promising aspect of multispectral imaging as they can be used
as a spectrophotometer for getting spectral information of a whole scene. We found that the
spectral adaptation transform do not provide significant improvement in the results for this
specific camera. SAT is used to address the inter-channel dependencies in the imaging sensor
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Fig. 5. Spectral reconstruction results from two surfaces along with measured (ground truth)
spectrum. Results show that use of SAT along with diagonal transform causes reduction in
the spectral reconstruction error.
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and if the overlapping among sensors is low, SAT do not provide improvement in the results.
However, SAT showed significant improvement with simulated sensors that were overlapping in
the wavelength spectrum. Therefore, we recommend the use of spectral adaptation transform to
address the intrinsic characteristics of imaging sensor. With the use of multispectral constancy
pipeline, we have demonstrated that a multispectral camera can be used to acquire reflectance
data from material surfaces when the imaging conditions, i.e. illumination is uncontrolled.
The proposed concept of multispectral constancy is valid for both filter-wheel and snapshot

type of multispectral cameras. However, further experiments have to be performed for snapshot
cameras to include the demosaicing and filter cross-talk effects. The next step from this work is
to use multispectral imaging for material identification and surface classification. The spectral
information can help in distinguishing among two material surfaces but for the classification
task, spatial information (i.e. texture, shape etc.) is also important. Multispectral constancy will
help in providing illuminant invariant representation of multispectral images. Having promising
results in terms of spectral reconstruction from multispectral images under unknown illumination
conditions, we are one step closer towards enabling the use of multispectral imaging for computer
vision applications.

Funding

Norges Forskningsråd.

Appendix

In this section, detailed results of root mean square error (RMSE) and cosine distance are
provided. Results are reported in the form of mean and 95 percentile. In the experiments with
illuminant estimation, color checker is masked out from the image and error in estimation of
illumination is also provided in the form of angular error.
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Table 1. Spectral reconstruction result of selected surfaces from the “Kitchen” image. Each
channel is acquired with manually adjusted integration time. Results are presented in form
of mean and 95 percentile of error metric. Results of manually selecting the white patch of
ColorChecker is shown with “Patch select”, while “SG-E” show results of Spectral gray-edge
algo. with angular error (∆A), after ColorChecker is masked out from image.

RMSE Cosine DistanceTest

Illuminant

Image

Transformation Mean 95 % Mean 95 %

Do nothing 1.7007 3.7506 0.0867 0.1571

Dc,ill 1.3796 2.8477 0.0386 0.0773
Patch select

ASATDc,ill 1.2673 2.7666 0.0347 0.067

Dc,ill 1.2607 2.7954 0.0328 0.0671

A

SG-E

∆A 0.0579 ASATDc,ill 1.1656 2.8097 0.0297 0.0579

Do nothing 1.91 4.4173 0.1278 0.2297

Dc,ill 1.0331 3.8032 0.0225 0.0495
Patch select

ASATDc,ill 1.0084 3.8485 0.0212 0.0455

Dc,ill 1.1715 3.7569 0.0337 0.0715

Coolwhite

SG-E

∆A 0.0976 ASATDc,ill 1.1277 3.7981 0.0312 0.0678

Do nothing 1.907 4.3645 0.0816 0.1524

Dc,ill 1.1652 3.1008 0.0245 0.0572
Patch select

ASATDc,ill 1.0904 3.0948 0.0229 0.0608

Dc,ill 1.16 3.1658 0.0244 0.046

D65

SG-E

∆A 0.093 ASATDc,ill 1.092 3.1741 0.0231 0.0464

Do nothing 2.1 4.0221 0.0996 0.1743

Dc,ill 1.3095 2.9973 0.0356 0.0629
Patch select

ASATDc,ill 1.2163 3.05 0.0325 0.0543

Dc,ill 1.2389 3.1152 0.0355 0.0594

Horizon

SG-E

∆A 0.0904 ASATDc,ill 1.1661 3.1667 0.0333 0.056

Do nothing 1.7456 4.0384 0.1073 0.1858

Dc,ill 1.0044 3.6175 0.0255 0.0574
Patch select

ASATDc,ill 0.9857 3.6702 0.0245 0.06

Dc,ill 1.0769 3.5472 0.0296 0.0625

TL84

SG-E

∆A 0.0934 ASATDc,ill 1.0397 3.5985 0.0274 0.0534
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Table 2. Spectral reconstruction result of selected surfaces from the “Kitchen” image, taken
with simulation of snapshot camera. Results are presented in form of mean and 95 percentile
of error metric. Results of manually selecting the white patch of ColorChecker is shown
with “Patch select”, while “SG-E” show results of Spectral gray-edge algo. with angular
error (∆A), after ColorChecker is masked out from image.

RMSE Cosine DistanceTest

Illuminant

Image

Transformation Mean 95 % Mean 95 %

Do nothing 1.5142 3.0859 0.06 0.3041

Dc,ill 1.2582 2.7207 0.0318 0.0662
Patch select

ASATDc,ill 1.156 2.7262 0.0285 0.0564

Dc,ill 1.2876 2.7812 0.0368 0.0688

A

SG-E

∆A 0.0579 ASATDc,ill 1.1945 2.8154 0.0335 0.0599

Do nothing 2.0593 4.5579 0.3201 0.6067

Dc,ill 1.0326 3.8029 0.0224 0.0493
Patch select

ASATDc,ill 1.0079 3.8483 0.0211 0.0453

Dc,ill 1.1662 3.8015 0.0342 0.0771

Coolwhite

SG-E

∆A 0.0976 ASATDc,ill 1.1299 3.8398 0.0321 0.0738

Do nothing 1.3305 3.1833 0.0301 0.0777

Dc,ill 1.1643 3.1003 0.0244 0.0572
Patch select

ASATDc,ill 1.0896 3.0948 0.0229 0.0608

Dc,ill 1.2494 3.197 0.0288 0.0538

D65

SG-E

∆A 0.093 ASATDc,ill 1.1678 3.1265 0.0266 0.047

Do nothing 1.4976 3.5967 0.0946 0.4329

Dc,ill 1.4139 2.9828 0.0368 0.0621
Patch select

ASATDc,ill 1.3066 2.994 0.0338 0.0557

Dc,ill 1.4165 3.0549 0.0425 0.0719

Horizon

SG-E

∆A 0.0904 ASATDc,ill 1.3228 3.093 0.0398 0.0707

Do nothing 1.8658 4.2665 0.3205 0.6623

Dc,ill 1.0054 3.625 0.0259 0.0608
Patch select

ASATDc,ill 0.9882 3.6774 0.025 0.064

Dc,ill 1.1141 3.5222 0.0326 0.0713

TL84

SG-E

∆A 0.0934 ASATDc,ill 1.0685 3.5738 0.0299 0.0611
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Table 3. Spectral reconstruction result of selected surfaces from the “Textile 1” image. Each
channel is acquired with manually adjusted integration time. Results are presented in form
of mean and 95 percentile of error metric. Results of manually selecting the white patch of
ColorChecker is shown with “Patch select”, while “SG-E” show results of Spectral gray-edge
algo. with angular error (∆A), after ColorChecker is masked out from image. This scene is
taken without illuminant A.

RMSE Cosine DistanceTest

Illuminant

Image

Transformation Mean 95 % Mean 95 %

Do nothing 1.0124 3.4885 0.1067 0.1802

Dc,ill 0.4841 2.6967 0.0233 0.0662
Patch select

ASATDc,ill 0.4821 2.8021 0.0239 0.0652

Dc,ill 0.531 2.4008 0.0272 0.0732

Coolwhite

SG-E

∆A 0.1062 ASATDc,ill 0.5051 2.5056 0.0257 0.0709

Do nothing 0.857 2.6147 0.0577 0.1112

Dc,ill 0.5188 2.2253 0.025 0.0695
Patch select

ASATDc,ill 0.4984 2.3421 0.0259 0.0703

Dc,ill 0.6329 2.0117 0.0244 0.0596

D65

SG-E

∆A 0.1187 ASATDc,ill 0.5823 2.126 0.0225 0.0581

Do nothing 1.144 2.3435 0.0742 0.1335

Dc,ill 0.6348 2.0552 0.0193 0.0469
Patch select

ASATDc,ill 0.5965 2.1733 0.0186 0.0456

Dc,ill 0.6105 2.268 0.02 0.0443

Horizon

SG-E

∆A 0.1645 ASATDc,ill 0.5777 2.376 0.0207 0.0448

Do nothing 0.8954 3.0953 0.0656 0.1293

Dc,ill 0.521 2.7433 0.0307 0.0844
Patch select

ASATDc,ill 0.5239 2.8381 0.0331 0.0866

Dc,ill 0.5165 2.6565 0.0252 0.0735

TL84

SG-E

∆A 0.151 ASATDc,ill 0.5122 2.7524 0.0269 0.0752
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Table 4. Spectral reconstruction result of selected surfaces from the “Textile 1” image, taken
with simulation of snapshot camera. Results are presented in form of mean and 95 percentile
of error metric. Results of manually selecting the white patch of ColorChecker is shown with
“Patch select”, while “SG-E” show results of Spectral gray-edge algo. with angular error
(∆A), after ColorChecker is masked out from image.This scene is taken without illuminant
A.

RMSE Cosine DistanceTest

Illuminant

Image

Transformation Mean 95 % Mean 95 %

Do nothing 1.5499 3.8389 0.3094 0.5816

Dc,ill 0.4838 2.6977 0.0233 0.0666
Patch select

ASATDc,ill 0.482 2.8031 0.0239 0.0656

Dc,ill 0.5261 2.4197 0.0271 0.0742

Coolwhite

SG-E

∆A 0.086 ASATDc,ill 0.5021 2.5253 0.0258 0.072

Do nothing 0.6054 2.0123 0.037 0.089

Dc,ill 0.5182 2.2286 0.025 0.0698
Patch select

ASATDc,ill 0.498 2.3452 0.0259 0.0706

Dc,ill 0.6509 1.9468 0.0256 0.0617

D65

SG-E

∆A 0.1126 ASATDc,ill 0.5971 2.0633 0.0234 0.06

Do nothing 0.7665 2.2513 0.1253 0.2308

Dc,ill 0.7205 1.9096 0.0223 0.0501
Patch select

ASATDc,ill 0.6761 2.0388 0.0219 0.0496

Dc,ill 0.7267 2.0789 0.0269 0.0729

Horizon

SG-E

∆A 0.0802 ASATDc,ill 0.6831 2.1995 0.0274 0.0769

Do nothing 1.3025 3.9351 0.3913 0.67

Dc,ill 0.5222 2.7445 0.0305 0.083
Patch select

ASATDc,ill 0.5249 2.8391 0.0329 0.0853

Dc,ill 0.5165 2.6765 0.0256 0.0737

TL84

SG-E

∆A 0.1235 ASATDc,ill 0.5138 2.772 0.0275 0.0754
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Table 5. Spectral reconstruction result of selected surfaces from the “Textile 2” image. Each
channel is acquired with manually adjusted integration time. Results are presented in form
of mean and 95 percentile of error metric. Results of manually selecting the white patch of
ColorChecker is shown with “Patch select”, while “SG-E” show results of Spectral gray-edge
algo. with angular error (∆A), after ColorChecker is masked out from image.

RMSE Cosine DistanceTest

Illuminant

Image

Transformation Mean 95 % Mean 95 %

Do nothing 1.8455 4.1913 0.0837 0.1966

Dc,ill 1.2922 2.8812 0.0396 0.1381
Patch select

ASATDc,ill 1.2435 2.9499 0.0376 0.1338

Dc,ill 1.2274 2.852 0.0366 0.1546

A

SG-E

∆A 0.0579 ASATDc,ill 1.2041 2.9587 0.0355 0.151

Do nothing 2.2736 4.4972 0.1197 0.2531

Dc,ill 1.251 2.6715 0.0317 0.1155
Patch select

ASATDc,ill 1.2268 2.7705 0.0315 0.1142

Dc,ill 1.2093 2.7357 0.0334 0.1313

Coolwhite

SG-E

∆A 0.0976 ASATDc,ill 1.1979 2.828 0.0333 0.1295

Do nothing 1.7803 4.2289 0.0769 0.2045

Dc,ill 1.2 3.4305 0.0361 0.1567
Patch select

ASATDc,ill 1.212 3.5152 0.0356 0.1549

Dc,ill 1.2399 3.2981 0.0355 0.1577

D65

SG-E

∆A 0.093 ASATDc,ill 1.2245 3.3836 0.0345 0.1543

Do nothing 1.944 4.3626 0.104 0.2038

Dc,ill 2.1323 5.0341 0.1204 0.25
Patch select

ASATDc,ill 2.149 5.0757 0.1216 0.2548

Dc,ill 1.7996 4.541 0.0705 0.1978

Horizon

SG-E

∆A 0.0904 ASATDc,ill 1.8272 4.6056 0.0717 0.2033

Do nothing 2.0818 4.4509 0.1153 0.2812

Dc,ill 1.2714 2.9514 0.0438 0.1634
Patch select

ASATDc,ill 1.2676 3.0732 0.0446 0.1666

Dc,ill 1.2377 2.8104 0.0409 0.1599

TL84

SG-E

∆A 0.0934 ASATDc,ill 1.221 2.9062 0.0409 0.1584

                                                                                              Vol. 27, No. 2 | 21 Jan 2019 | OPTICS EXPRESS 1067 



Table 6. Spectral reconstruction result of selected surfaces from the “Textile_2” image,
taken with simulation of snapshot camera. Results are presented in form of mean and 95
percentile of error metric. Results of manually selecting the white patch of ColorChecker
is shown with “Patch select”, while “SG-E” show results of Spectral gray-edge algo. with
angular error (∆A), after ColorChecker is masked out from image.

RMSE Cosine DistanceTest

Illuminant

Image

Transformation Mean 95 % Mean 95 %

Do nothing 1.6211 4.1602 0.1145 0.3778

Dc,ill 1.2962 2.854 0.0397 0.1382
Patch select

ASATDc,ill 1.2429 2.9196 0.0376 0.1339

Dc,ill 1.2822 2.8042 0.0381 0.1527

A

SG-E

∆A 0.0579 ASATDc,ill 1.238 2.8956 0.0365 0.1484

Do nothing 2.3063 5.1156 0.2552 0.6308

Dc,ill 1.2374 2.6408 0.0315 0.1185
Patch select

ASATDc,ill 1.2151 2.744 0.0315 0.1173

Dc,ill 1.2124 2.69 0.0329 0.1305

Coolwhite

SG-E

∆A 0.0976 ASATDc,ill 1.1984 2.7875 0.0329 0.1288

Do nothing 1.3168 3.0995 0.0442 0.1434

Dc,ill 1.1992 3.4287 0.0361 0.1566
Patch select

ASATDc,ill 1.2111 3.5136 0.0355 0.1548

Dc,ill 1.3004 3.1749 0.0378 0.1594

D65

SG-E

∆A 0.093 ASATDc,ill 1.2553 3.2501 0.036 0.1548

Do nothing 2.4914 4.868 0.1667 0.4982

Dc,ill 2.1986 5.1516 0.128 0.2643
Patch select

ASATDc,ill 2.2144 5.19 0.1292 0.2702

Dc,ill 1.7334 4.4552 0.0628 0.1771

Horizon

SG-E

∆A 0.0904 ASATDc,ill 1.7607 4.5202 0.0633 0.1797

Do nothing 2.2905 4.7938 0.2626 0.6477

Dc,ill 1.2874 2.8718 0.0433 0.1598
Patch select

ASATDc,ill 1.2695 2.9824 0.0437 0.1593

Dc,ill 1.2472 2.7941 0.0408 0.1594

TL84

SG-E

∆A 0.0934 ASATDc,ill 1.2263 2.889 0.0409 0.1578
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